Spaces:
Runtime error
Runtime error
File size: 1,219 Bytes
f3791c9 52477e5 f3791c9 b373ea6 52477e5 f3791c9 2caf5ff f3791c9 52477e5 f3791c9 52477e5 ff1492f 78db2a1 f3791c9 52477e5 f3791c9 54bd402 8e90b77 52477e5 f3791c9 54bd402 777a836 f3791c9 603ee20 f3791c9 777a836 f3791c9 603ee20 f3791c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
import os
import requests
os.environ['NO_PROXY'] = 'huggingface.co'
model = SentenceTransformer('clip-ViT-B-32')
# Candidate images.
dataset = load_dataset("sasha/pedro-embeddings-new")
ds = dataset["train"]
ds.add_faiss_index(column='embeddings')
def query(image, number_to_retrieve=1):
input_image = model.encode(image)
scores, retrieved_examples = ds.get_nearest_examples('embeddings', input_image, k=number_to_retrieve)
return retrieved_examples['image'][0]
with gr.Blocks() as demo:
gr.Markdown("# Find my Pedro Pascal")
gr.Markdown("## Use this Space to find the Pedro Pascal most similar to your input image!")
with gr.Row():
with gr.Column(scale=1, min_width=600):
inputs = gr.Image(type='pil')
btn = gr.Button("Find my Pedro!")
description = gr.Markdown()
with gr.Column(scale=1, min_width=600):
outputs=gr.Image()
gr.Markdown("### Image Examples")
gr.Examples(
examples=["elton.jpg", "ken.jpg", "gaga.jpg", "taylor.jpg"],
inputs=inputs,
outputs=[outputs],
fn=query,
cache_examples=True,
)
btn.click(query, inputs, [outputs])
demo.launch()
|