import streamlit as st import pickle #from Summarizer_Helper import Summary_Gen from gpt4all import GPT4All import textwrap with open('examples.pkl', 'rb') as f: example_list = pickle.load(f) # Model initialization (assuming the model is already downloaded) from huggingface_hub import hf_hub_download model_path = "models" model_name = "Llama-2-7b-MOM_Summar.Q2_K.gguf" # hf_hub_download(repo_id="sasvata/Llama2-7b-MOM-Summary-Finetuned-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) print("Start the model init process") model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") print("Finish the model init process") ## Function to convert plain text to markdown format def to_markdown(text): text = text.replace('•', ' *') return textwrap.indent(text, '> ', predicate=lambda _: True) # Default system prompt for generating conversation summaries DEFAULT_SYSTEM_PROMPT = """ Below is a conversation between a human and an AI agent. Write a summary of the conversation. """.strip() def generate_prompt( Transcript: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT ) -> str: return f"""### Instruction: {system_prompt} ### Input: {Transcript.strip()} ### Response: """.strip() # Function to generate summary with the help of fine-tuned model def Summary_Gen(Transcript): prompt = generate_prompt(Transcript) summary = model.generate(prompt=prompt,max_tokens=4096) # summary_output = to_markdown(summary) return summary_output # Function for text summarization def summarize_text(text): # Your text summarization logic here (replaced with Summary_Gen) summarized_text = Summary_Gen(text) return summarized_text st.set_page_config(layout="wide", page_title="MOM-Summary-Generator📑", page_icon="📑") st.title("Minutes Of Meeting (MOM) - Summary Generator 📑") # Text input and output elements option = st.selectbox( "Choose Example", example_list, index=None, placeholder="Choose Example", ) summary_output = "" col1, col2 = st.columns(2) col1.title('Input') col1.container(height=500, border=True).text_area("", option, height=1000) if col1.button("Summarize"): with st.spinner('Wait for it...'): summary_output = summarize_text(option) col2.title('Output') col2.container(height=500, border=True).markdown(summary_output, unsafe_allow_html=True)