from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() # convert the tokens to text, and then split the responses into the right format response = tokenizer.decode(history[0]).split("<|endoftext|>") response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list return response, history import gradio as gr demo = gr.Blocks() with demo: with gr.Row(): output_chatbot = gr.outputs.Chatbot() output_state = gr.outputs.State() with gr.Row(): input_text = gr.inputs.Textbox(label="write some text") input_state = gr.inputs.State() submit_button = gr.Button("Send") submit_button.click(predict, inputs=[input_text, input_state], outputs=[output_chatbot, output_state]) demo.launch()