q8-ltx-video / q8_attention_processors.py
sayakpaul's picture
sayakpaul HF staff
Upload 14 files
8cf98bd verified
"""
Reference:
https://github.com/KONAKONA666/q8_kernels/blob/9cee3f3d4ca5ec8ab463179be32c8001e31f8f33/q8_kernels/modules/attention.py
"""
import torch
import q8_kernels.functional as Q8F
from diffusers.models.transformers.transformer_ltx import apply_rotary_emb
from diffusers.models.attention import Attention
NON_MM_PRECISION_TYPE = torch.bfloat16
MM_PRECISION_TYPE = torch.bfloat16
class LTXVideoQ8AttentionProcessor:
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states=None,
attention_mask=None,
image_rotary_emb=None,
) -> torch.Tensor:
if attention_mask is not None and attention_mask.ndim > 1:
attention_mask = attention_mask.argmin(-1).squeeze().int()
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.norm_q(query, NON_MM_PRECISION_TYPE)
key = attn.norm_k(key, NON_MM_PRECISION_TYPE)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
hidden_states = Q8F.flash_attention.flash_attn_func(
query, key, value, batch_mask=attention_mask, apply_qk_hadamard=True
)
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
return hidden_states.to(NON_MM_PRECISION_TYPE)