sbgonenc96 commited on
Commit
c945800
·
verified ·
1 Parent(s): 8e5e584

requirements.txt

Browse files

scikit-learn==1.4.1.post1
pandas==2.1.0

Files changed (1) hide show
  1. app.py +82 -0
app.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # # Car prediction model training and serving with streamlit
5
+
6
+ #import libraries
7
+ import pandas as pd
8
+ from sklearn.model_selection import train_test_split
9
+ from sklearn.linear_model import LinearRegression
10
+ from sklearn.metrics import r2_score,mean_squared_error
11
+ from sklearn.pipeline import Pipeline
12
+ from sklearn.compose import ColumnTransformer
13
+ from sklearn.preprocessing import StandardScaler,OneHotEncoder
14
+
15
+
16
+
17
+ #Load data
18
+ df=pd.read_csv('cars.csv')
19
+
20
+ X=df.drop('Price',axis=1)
21
+ y=df[['Price']]
22
+
23
+
24
+
25
+ X_train,X_test,y_train,y_test=train_test_split(X,y,
26
+ test_size=0.2,
27
+ random_state=42)
28
+
29
+
30
+
31
+
32
+ preproccer=ColumnTransformer(transformers=[('num',StandardScaler(),
33
+ ['Mileage','Cylinder','Liter','Doors']),
34
+ ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
35
+
36
+
37
+
38
+
39
+ model=LinearRegression()
40
+ pipe=Pipeline(steps=[('preprocessor',preproccer),
41
+ ('model',model)])
42
+
43
+ pipe.fit(X_train,y_train)
44
+ y_pred=pipe.predict(X_test)
45
+ mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
46
+
47
+ import streamlit as st
48
+ def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
49
+ input_data=pd.DataFrame({
50
+ 'Make':[make],
51
+ 'Model':[model],
52
+ 'Trim':[trim],
53
+ 'Mileage':[mileage],
54
+ 'Type':[car_type],
55
+ 'Car_type':[car_type],
56
+ 'Cylinder':[cylinder],
57
+ 'Liter':[liter],
58
+ 'Doors':[doors],
59
+ 'Cruise':[cruise],
60
+ 'Sound':[sound],
61
+ 'Leather':[leather]
62
+ })
63
+ prediction=pipe.predict(input_data)[0]
64
+ return prediction
65
+
66
+ st.title("Car Price Prediction :green_car: @sbgonenc")
67
+ st.write("Select Car Specs")
68
+ make=st.selectbox("Brand",df['Make'].unique())
69
+ model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
70
+ trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
71
+ mileage=st.number_input("Milage",200,60000)
72
+ car_type=st.selectbox("Type",df[(df['Make']==make) & (df['Model']==model) & (df['Trim']==trim )]['Type'].unique())
73
+ cylinder=st.selectbox("Cylinders",df['Cylinder'].unique())
74
+ liter=st.number_input("Liter",1,6)
75
+ doors=st.selectbox("Doors",df['Doors'].unique())
76
+ cruise=st.radio("Cruise",[True,False])
77
+ sound=st.radio("Sound System",[True,False])
78
+ leather=st.radio("Leather",[True,False])
79
+ if st.button("Prediction"):
80
+ pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
81
+
82
+ st.write("11062024:Predicted Price :red_car: $",round(pred[0],2))