Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,42 +3,63 @@ import os
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import gradio as gr
|
5 |
|
6 |
-
#
|
7 |
-
model_name
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
outputs = model.generate(
|
15 |
inputs.input_ids,
|
16 |
-
max_length=
|
17 |
do_sample=True,
|
18 |
-
temperature=
|
19 |
-
top_p=
|
20 |
-
repetition_penalty=
|
21 |
pad_token_id=tokenizer.eos_token_id
|
22 |
)
|
23 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
def persona_response(prompt, persona="You are a helpful talking dog that answers in short, simple phrases."):
|
28 |
-
full_prompt = f"{persona}: {prompt}"
|
29 |
-
return generate_response(full_prompt)
|
30 |
|
31 |
-
# Define Gradio interface function
|
32 |
-
def chat_interface(user_input, persona="
|
33 |
-
return
|
34 |
|
35 |
-
# Gradio interface
|
36 |
interface = gr.Interface(
|
37 |
fn=chat_interface,
|
38 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
outputs="text",
|
40 |
-
title="
|
41 |
-
description="Chat with the bot!
|
42 |
)
|
43 |
|
44 |
# Launch the Gradio app
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# Function to load model and tokenizer based on selection
|
7 |
+
def load_model(model_name):
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
return tokenizer, model
|
11 |
+
|
12 |
+
# Define the function to generate a response with adjustable parameters and model-specific adjustments
|
13 |
+
def generate_response(prompt, model_name, persona="I am a helpful assistant.", temperature=0.7, top_p=0.9, repetition_penalty=1.2, max_length=70):
|
14 |
+
# Load the chosen model and tokenizer
|
15 |
+
tokenizer, model = load_model(model_name)
|
16 |
+
|
17 |
+
# Adjust the prompt format for DialoGPT
|
18 |
+
if model_name == "microsoft/DialoGPT-small":
|
19 |
+
full_prompt = f"User: {prompt}\nBot:" # Structure as a conversation
|
20 |
+
else:
|
21 |
+
full_prompt = f"{persona}: {prompt}" # Standard format for other models
|
22 |
+
|
23 |
+
# Tokenize and generate response
|
24 |
+
inputs = tokenizer(full_prompt, return_tensors="pt")
|
25 |
outputs = model.generate(
|
26 |
inputs.input_ids,
|
27 |
+
max_length=max_length,
|
28 |
do_sample=True,
|
29 |
+
temperature=temperature,
|
30 |
+
top_p=top_p,
|
31 |
+
repetition_penalty=repetition_penalty,
|
32 |
pad_token_id=tokenizer.eos_token_id
|
33 |
)
|
34 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
35 |
+
|
36 |
+
# Trim the prompt if it appears in the response
|
37 |
+
if model_name == "microsoft/DialoGPT-small":
|
38 |
+
response_without_prompt = response.split("Bot:", 1)[-1].strip()
|
39 |
+
else:
|
40 |
+
response_without_prompt = response.split(":", 1)[-1].strip()
|
41 |
|
42 |
+
return response_without_prompt if response_without_prompt else "I'm not sure how to respond to that."
|
|
|
|
|
|
|
43 |
|
44 |
+
# Define Gradio interface function with model selection
|
45 |
+
def chat_interface(user_input, model_choice, persona="I am a helpful assistant", temperature=0.7, top_p=0.9, repetition_penalty=1.2, max_length=50):
|
46 |
+
return generate_response(user_input, model_choice, persona, temperature, top_p, repetition_penalty, max_length)
|
47 |
|
48 |
+
# Set up Gradio interface with model selection and parameter sliders
|
49 |
interface = gr.Interface(
|
50 |
fn=chat_interface,
|
51 |
+
inputs=[
|
52 |
+
gr.Textbox(label="User Input"),
|
53 |
+
gr.Dropdown(choices=["distilgpt2", "gpt2", "microsoft/DialoGPT-small"], label="Model Choice", value="distilgpt2"),
|
54 |
+
gr.Textbox(label="Persona", value="You are a helpful assistant."),
|
55 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1),
|
56 |
+
gr.Slider(label="Top-p (Nucleus Sampling)", minimum=0.1, maximum=1.0, value=0.9, step=0.1),
|
57 |
+
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.2, step=0.1),
|
58 |
+
gr.Slider(label="Max Length", minimum=10, maximum=100, value=50, step=5)
|
59 |
+
],
|
60 |
outputs="text",
|
61 |
+
title="Interactive Chatbot with Model Comparison",
|
62 |
+
description="Chat with the bot! Select a model and adjust parameters to see how they affect the response."
|
63 |
)
|
64 |
|
65 |
# Launch the Gradio app
|