drsaikirant88
commited on
Commit
•
7cb3d00
1
Parent(s):
f9c83e1
Upload app.py
Browse files
app.py
CHANGED
@@ -20,10 +20,10 @@
|
|
20 |
|
21 |
# Libraries
|
22 |
import torch
|
23 |
-
import pickle
|
24 |
from utils import *
|
25 |
import gradio as gr
|
26 |
from numpy import array
|
|
|
27 |
from torch.autograd import Variable
|
28 |
from torch.cuda import is_available as check_cuda
|
29 |
from PIL.ImageOps import grayscale
|
@@ -37,7 +37,9 @@ nms_thresh = 0.30
|
|
37 |
run_cuda = False
|
38 |
|
39 |
# CFG Files
|
|
|
40 |
clsnames= 'cfg/openimages.names'
|
|
|
41 |
|
42 |
# Load classes
|
43 |
classes = load_classes(clsnames)
|
@@ -45,8 +47,10 @@ num_classes = len(classes)
|
|
45 |
|
46 |
# Set up the neural network
|
47 |
print('Load Network')
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
print('Successfully loaded Network')
|
52 |
|
@@ -63,6 +67,9 @@ inp_dim = int(model.net_info["height"])
|
|
63 |
if CUDA:
|
64 |
model.cuda()
|
65 |
|
|
|
|
|
|
|
66 |
def get_detections(x):
|
67 |
c1 = [int(y) for y in x[1:3]]
|
68 |
c2 = [int(y) for y in x[3:5]]
|
@@ -248,7 +255,7 @@ def predict(img):
|
|
248 |
emotions = {learn_emotion_labels[i]: float(probs_emotion[i]) for i in range(len(learn_emotion_labels))}
|
249 |
sentiments = {learn_sentiment_labels[i]: float(probs_sentiment[i]) for i in range(len(learn_sentiment_labels))}
|
250 |
|
251 |
-
output = [img, emotions, sentiments, None, None, None, None, None, None]
|
252 |
|
253 |
else: # Max 3 for now
|
254 |
for face in faces[:3]:
|
@@ -262,7 +269,7 @@ def predict(img):
|
|
262 |
emotions = {learn_emotion_labels[i]: float(probs_emotion[i]) for i in range(len(learn_emotion_labels))}
|
263 |
sentiments = {learn_sentiment_labels[i]: float(probs_sentiment[i]) for i in range(len(learn_sentiment_labels))}
|
264 |
|
265 |
-
output.append(img)
|
266 |
output.append(emotions)
|
267 |
output.append(sentiments)
|
268 |
|
|
|
20 |
|
21 |
# Libraries
|
22 |
import torch
|
|
|
23 |
from utils import *
|
24 |
import gradio as gr
|
25 |
from numpy import array
|
26 |
+
from darknet import Darknet
|
27 |
from torch.autograd import Variable
|
28 |
from torch.cuda import is_available as check_cuda
|
29 |
from PIL.ImageOps import grayscale
|
|
|
37 |
run_cuda = False
|
38 |
|
39 |
# CFG Files
|
40 |
+
cfg = 'cfg/yolov3-openimages.cfg'
|
41 |
clsnames= 'cfg/openimages.names'
|
42 |
+
weights = 'cfg/yolov3-openimages.weights'
|
43 |
|
44 |
# Load classes
|
45 |
classes = load_classes(clsnames)
|
|
|
47 |
|
48 |
# Set up the neural network
|
49 |
print('Load Network')
|
50 |
+
model = Darknet(cfg)
|
51 |
+
|
52 |
+
print('Load Weights')
|
53 |
+
model.load_weights(weights)
|
54 |
|
55 |
print('Successfully loaded Network')
|
56 |
|
|
|
67 |
if CUDA:
|
68 |
model.cuda()
|
69 |
|
70 |
+
# Set the model in evaluation mode
|
71 |
+
model.eval()
|
72 |
+
|
73 |
def get_detections(x):
|
74 |
c1 = [int(y) for y in x[1:3]]
|
75 |
c2 = [int(y) for y in x[3:5]]
|
|
|
255 |
emotions = {learn_emotion_labels[i]: float(probs_emotion[i]) for i in range(len(learn_emotion_labels))}
|
256 |
sentiments = {learn_sentiment_labels[i]: float(probs_sentiment[i]) for i in range(len(learn_sentiment_labels))}
|
257 |
|
258 |
+
output = [img.resize((12, 12)), emotions, sentiments, None, None, None, None, None, None]
|
259 |
|
260 |
else: # Max 3 for now
|
261 |
for face in faces[:3]:
|
|
|
269 |
emotions = {learn_emotion_labels[i]: float(probs_emotion[i]) for i in range(len(learn_emotion_labels))}
|
270 |
sentiments = {learn_sentiment_labels[i]: float(probs_sentiment[i]) for i in range(len(learn_sentiment_labels))}
|
271 |
|
272 |
+
output.append(img.resize((12, 12)))
|
273 |
output.append(emotions)
|
274 |
output.append(sentiments)
|
275 |
|