# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) # OpenAI Chat completion import openai #importing openai for API usage import chainlit as cl #importing chainlit for our app # We select our model. If you do not have access to GPT-4, please use GPT-3.5T (gpt-3.5-turbo) model_name = "gpt-3.5-turbo" # model_name = "gpt-4" settings = { "temperature": 0.7, # higher value increases output diveresity/randomness "max_tokens": 500, # maximum length of output response "top_p": 1, # choose only the top x% of possible words to return "frequency_penalty": 0, # higher value will result in the model being more conservative in its use of repeated tokens. "presence_penalty": 0, # higher value will result in the model being more likely to generate tokens that have not yet been included in the generated text } @cl.on_chat_start # marks a function that will be executed at the start of a user session def start_chat(): cl.user_session.set( "message_history", [{"role": "system", "content": "You are a helpful assistant."}], ) @cl.on_message # marks a function that should be run each time the chatbot receives a message from a user async def main(message: str): message_history = cl.user_session.get("message_history") message_history.append({"role": "user", "content": message}) msg = cl.Message(content="") async for stream_resp in await openai.ChatCompletion.acreate( model=model_name, messages=message_history, stream=True, **settings ): token = stream_resp.choices[0]["delta"].get("content", "") await msg.stream_token(token) message_history.append({"role": "assistant", "content": msg.content}) await msg.send()