File size: 9,245 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Data loading based on https://github.com/NVIDIA/flownet2-pytorch

import numpy as np
import torch
import torch.utils.data as data
import torch.nn.functional as F

import os
import math
import random
from glob import glob
import os.path as osp

from utils import frame_utils
from utils.augmentor import FlowAugmentor, SparseFlowAugmentor


class FlowDataset(data.Dataset):
    def __init__(self, aug_params=None, sparse=False):
        self.augmentor = None
        self.sparse = sparse
        if aug_params is not None:
            if sparse:
                self.augmentor = SparseFlowAugmentor(**aug_params)
            else:
                self.augmentor = FlowAugmentor(**aug_params)

        self.is_test = False
        self.init_seed = False
        self.flow_list = []
        self.image_list = []
        self.extra_info = []

    def __getitem__(self, index):

        if self.is_test:
            img1 = frame_utils.read_gen(self.image_list[index][0])
            img2 = frame_utils.read_gen(self.image_list[index][1])
            img1 = np.array(img1).astype(np.uint8)[..., :3]
            img2 = np.array(img2).astype(np.uint8)[..., :3]
            img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
            img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
            return img1, img2, self.extra_info[index]

        if not self.init_seed:
            worker_info = torch.utils.data.get_worker_info()
            if worker_info is not None:
                torch.manual_seed(worker_info.id)
                np.random.seed(worker_info.id)
                random.seed(worker_info.id)
                self.init_seed = True

        index = index % len(self.image_list)
        valid = None
        if self.sparse:
            flow, valid = frame_utils.readFlowKITTI(self.flow_list[index])
        else:
            flow = frame_utils.read_gen(self.flow_list[index])

        img1 = frame_utils.read_gen(self.image_list[index][0])
        img2 = frame_utils.read_gen(self.image_list[index][1])

        flow = np.array(flow).astype(np.float32)
        img1 = np.array(img1).astype(np.uint8)
        img2 = np.array(img2).astype(np.uint8)

        # grayscale images
        if len(img1.shape) == 2:
            img1 = np.tile(img1[...,None], (1, 1, 3))
            img2 = np.tile(img2[...,None], (1, 1, 3))
        else:
            img1 = img1[..., :3]
            img2 = img2[..., :3]

        if self.augmentor is not None:
            if self.sparse:
                img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid)
            else:
                img1, img2, flow = self.augmentor(img1, img2, flow)

        img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
        img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
        flow = torch.from_numpy(flow).permute(2, 0, 1).float()

        if valid is not None:
            valid = torch.from_numpy(valid)
        else:
            valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000)

        return img1, img2, flow, valid.float()


    def __rmul__(self, v):
        self.flow_list = v * self.flow_list
        self.image_list = v * self.image_list
        return self
        
    def __len__(self):
        return len(self.image_list)
        

class MpiSintel(FlowDataset):
    def __init__(self, aug_params=None, split='training', root='datasets/Sintel', dstype='clean'):
        super(MpiSintel, self).__init__(aug_params)
        flow_root = osp.join(root, split, 'flow')
        image_root = osp.join(root, split, dstype)

        if split == 'test':
            self.is_test = True

        for scene in os.listdir(image_root):
            image_list = sorted(glob(osp.join(image_root, scene, '*.png')))
            for i in range(len(image_list)-1):
                self.image_list += [ [image_list[i], image_list[i+1]] ]
                self.extra_info += [ (scene, i) ] # scene and frame_id

            if split != 'test':
                self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo')))


class FlyingChairs(FlowDataset):
    def __init__(self, aug_params=None, split='train', root='datasets/FlyingChairs_release/data'):
        super(FlyingChairs, self).__init__(aug_params)

        images = sorted(glob(osp.join(root, '*.ppm')))
        flows = sorted(glob(osp.join(root, '*.flo')))
        assert (len(images)//2 == len(flows))

        split_list = np.loadtxt('chairs_split.txt', dtype=np.int32)
        for i in range(len(flows)):
            xid = split_list[i]
            if (split=='training' and xid==1) or (split=='validation' and xid==2):
                self.flow_list += [ flows[i] ]
                self.image_list += [ [images[2*i], images[2*i+1]] ]


class FlyingThings3D(FlowDataset):
    def __init__(self, aug_params=None, root='datasets/FlyingThings3D', dstype='frames_cleanpass'):
        super(FlyingThings3D, self).__init__(aug_params)

        for cam in ['left']:
            for direction in ['into_future', 'into_past']:
                image_dirs = sorted(glob(osp.join(root, dstype, 'TRAIN/*/*')))
                image_dirs = sorted([osp.join(f, cam) for f in image_dirs])

                flow_dirs = sorted(glob(osp.join(root, 'optical_flow/TRAIN/*/*')))
                flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs])

                for idir, fdir in zip(image_dirs, flow_dirs):
                    images = sorted(glob(osp.join(idir, '*.png')) )
                    flows = sorted(glob(osp.join(fdir, '*.pfm')) )
                    for i in range(len(flows)-1):
                        if direction == 'into_future':
                            self.image_list += [ [images[i], images[i+1]] ]
                            self.flow_list += [ flows[i] ]
                        elif direction == 'into_past':
                            self.image_list += [ [images[i+1], images[i]] ]
                            self.flow_list += [ flows[i+1] ]
      

class KITTI(FlowDataset):
    def __init__(self, aug_params=None, split='training', root='datasets/KITTI'):
        super(KITTI, self).__init__(aug_params, sparse=True)
        if split == 'testing':
            self.is_test = True

        root = osp.join(root, split)
        images1 = sorted(glob(osp.join(root, 'image_2/*_10.png')))
        images2 = sorted(glob(osp.join(root, 'image_2/*_11.png')))

        for img1, img2 in zip(images1, images2):
            frame_id = img1.split('/')[-1]
            self.extra_info += [ [frame_id] ]
            self.image_list += [ [img1, img2] ]

        if split == 'training':
            self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png')))


class HD1K(FlowDataset):
    def __init__(self, aug_params=None, root='datasets/HD1k'):
        super(HD1K, self).__init__(aug_params, sparse=True)

        seq_ix = 0
        while 1:
            flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix)))
            images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix)))

            if len(flows) == 0:
                break

            for i in range(len(flows)-1):
                self.flow_list += [flows[i]]
                self.image_list += [ [images[i], images[i+1]] ]

            seq_ix += 1


def fetch_dataloader(args, TRAIN_DS='C+T+K+S+H'):
    """ Create the data loader for the corresponding trainign set """

    if args.stage == 'chairs':
        aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True}
        train_dataset = FlyingChairs(aug_params, split='training')
    
    elif args.stage == 'things':
        aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True}
        clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass')
        final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass')
        train_dataset = clean_dataset + final_dataset

    elif args.stage == 'sintel':
        aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True}
        things = FlyingThings3D(aug_params, dstype='frames_cleanpass')
        sintel_clean = MpiSintel(aug_params, split='training', dstype='clean')
        sintel_final = MpiSintel(aug_params, split='training', dstype='final')        

        if TRAIN_DS == 'C+T+K+S+H':
            kitti = KITTI({'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True})
            hd1k = HD1K({'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True})
            train_dataset = 100*sintel_clean + 100*sintel_final + 200*kitti + 5*hd1k + things

        elif TRAIN_DS == 'C+T+K/S':
            train_dataset = 100*sintel_clean + 100*sintel_final + things

    elif args.stage == 'kitti':
        aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False}
        train_dataset = KITTI(aug_params, split='training')

    train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, 
        pin_memory=False, shuffle=True, num_workers=4, drop_last=True)

    print('Training with %d image pairs' % len(train_dataset))
    return train_loader