Spaces:
Running
on
A10G
Running
on
A10G
File size: 8,200 Bytes
320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# -*- coding: utf-8 -*-
import sys
sys.path.append(".")
import cv2
import os
import numpy as np
import argparse
from PIL import Image
import torch
from torch.utils.data import DataLoader
from core.dataset import TestDataset
from model.modules.flow_comp_raft import RAFT_bi
from model.recurrent_flow_completion import RecurrentFlowCompleteNet
from RAFT.utils.flow_viz_pt import flow_to_image
import cvbase
import imageio
from time import time
import warnings
warnings.filterwarnings("ignore")
def create_dir(dir):
"""Creates a directory if not exist.
"""
if not os.path.exists(dir):
os.makedirs(dir)
def save_flows(output, videoFlowF, videoFlowB):
# create_dir(os.path.join(output, 'forward_flo'))
# create_dir(os.path.join(output, 'backward_flo'))
create_dir(os.path.join(output, 'forward_png'))
create_dir(os.path.join(output, 'backward_png'))
N = videoFlowF.shape[-1]
for i in range(N):
forward_flow = videoFlowF[..., i]
backward_flow = videoFlowB[..., i]
forward_flow_vis = cvbase.flow2rgb(forward_flow)
backward_flow_vis = cvbase.flow2rgb(backward_flow)
# cvbase.write_flow(forward_flow, os.path.join(output, 'forward_flo', '{:05d}.flo'.format(i)))
# cvbase.write_flow(backward_flow, os.path.join(output, 'backward_flo', '{:05d}.flo'.format(i)))
forward_flow_vis = (forward_flow_vis*255.0).astype(np.uint8)
backward_flow_vis = (backward_flow_vis*255.0).astype(np.uint8)
imageio.imwrite(os.path.join(output, 'forward_png', '{:05d}.png'.format(i)), forward_flow_vis)
imageio.imwrite(os.path.join(output, 'backward_png', '{:05d}.png'.format(i)), backward_flow_vis)
def tensor2np(array):
array = torch.stack(array, dim=-1).squeeze(0).permute(1, 2, 0, 3).cpu().numpy()
return array
def main_worker(args):
# set up datasets and data loader
args.size = (args.width, args.height)
test_dataset = TestDataset(vars(args))
test_loader = DataLoader(test_dataset,
batch_size=1,
shuffle=False,
num_workers=args.num_workers)
# set up models
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
fix_raft = RAFT_bi(args.raft_model_path, device)
fix_flow_complete = RecurrentFlowCompleteNet(args.fc_model_path)
for p in fix_flow_complete.parameters():
p.requires_grad = False
fix_flow_complete.to(device)
fix_flow_complete.eval()
total_frame_epe = []
time_all = []
print('Start evaluation...')
# create results directory
result_path = os.path.join('results_flow', f'{args.dataset}')
if not os.path.exists(result_path):
os.makedirs(result_path)
eval_summary = open(os.path.join(result_path, f"{args.dataset}_metrics.txt"), "w")
for index, items in enumerate(test_loader):
frames, masks, flows_f, flows_b, video_name, frames_PIL = items
local_masks = masks.float().to(device)
video_length = frames.size(1)
if args.load_flow:
gt_flows_bi = (flows_f.to(device), flows_b.to(device))
else:
short_len = 60
if frames.size(1) > short_len:
gt_flows_f_list, gt_flows_b_list = [], []
for f in range(0, video_length, short_len):
end_f = min(video_length, f + short_len)
if f == 0:
flows_f, flows_b = fix_raft(frames[:,f:end_f], iters=args.raft_iter)
else:
flows_f, flows_b = fix_raft(frames[:,f-1:end_f], iters=args.raft_iter)
gt_flows_f_list.append(flows_f)
gt_flows_b_list.append(flows_b)
gt_flows_f = torch.cat(gt_flows_f_list, dim=1)
gt_flows_b = torch.cat(gt_flows_b_list, dim=1)
gt_flows_bi = (gt_flows_f, gt_flows_b)
else:
gt_flows_bi = fix_raft(frames, iters=20)
torch.cuda.synchronize()
time_start = time()
# flow_length = flows_f.size(1)
# f_stride = 30
# pred_flows_f = []
# pred_flows_b = []
# suffix = flow_length%f_stride
# last = flow_length//f_stride
# for f in range(0, flow_length, f_stride):
# gt_flows_bi_i = (gt_flows_bi[0][:,f:f+f_stride], gt_flows_bi[1][:,f:f+f_stride])
# pred_flows_bi, _ = fix_flow_complete.forward_bidirect_flow(gt_flows_bi_i, local_masks[:,f:f+f_stride+1])
# pred_flows_f_i, pred_flows_b_i = fix_flow_complete.combine_flow(gt_flows_bi_i, pred_flows_bi, local_masks[:,f:f+f_stride+1])
# pred_flows_f.append(pred_flows_f_i)
# pred_flows_b.append(pred_flows_b_i)
# pred_flows_f = torch.cat(pred_flows_f, dim=1)
# pred_flows_b = torch.cat(pred_flows_b, dim=1)
# pred_flows_bi = (pred_flows_f, pred_flows_b)
pred_flows_bi, _ = fix_flow_complete.forward_bidirect_flow(gt_flows_bi, local_masks)
pred_flows_bi = fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, local_masks)
torch.cuda.synchronize()
time_i = time() - time_start
time_i = time_i*1.0/frames.size(1)
time_all = time_all+[time_i]*frames.size(1)
cur_video_epe = []
epe1 = torch.mean(torch.sum((flows_f - pred_flows_bi[0].cpu())**2, dim=2).sqrt())
epe2 = torch.mean(torch.sum((flows_b - pred_flows_bi[1].cpu())**2, dim=2).sqrt())
cur_video_epe.append(epe1.numpy())
cur_video_epe.append(epe2.numpy())
total_frame_epe = total_frame_epe+[epe1.numpy()]*flows_f.size(1)
total_frame_epe = total_frame_epe+[epe2.numpy()]*flows_f.size(1)
cur_epe = sum(cur_video_epe) / len(cur_video_epe)
avg_time = sum(time_all) / len(time_all)
print(
f'[{index+1:3}/{len(test_loader)}] Name: {str(video_name):25} | EPE: {cur_epe:.4f} | Time: {avg_time:.4f}'
)
eval_summary.write(
f'[{index+1:3}/{len(test_loader)}] Name: {str(video_name):25} | EPE: {cur_epe:.4f} | Time: {avg_time:.4f}\n'
)
# saving images for evaluating warpping errors
if args.save_results:
forward_flows = pred_flows_bi[0].cpu().permute(1,0,2,3,4)
backward_flows = pred_flows_bi[1].cpu().permute(1,0,2,3,4)
# forward_flows = flows_f.cpu().permute(1,0,2,3,4)
# backward_flows = flows_b.cpu().permute(1,0,2,3,4)
videoFlowF = list(forward_flows)
videoFlowB = list(backward_flows)
videoFlowF = tensor2np(videoFlowF)
videoFlowB = tensor2np(videoFlowB)
save_frame_path = os.path.join(result_path, video_name[0])
save_flows(save_frame_path, videoFlowF, videoFlowB)
avg_frame_epe = sum(total_frame_epe) / len(total_frame_epe)
print(f'Finish evaluation... Average Frame EPE: {avg_frame_epe:.4f} | | Time: {avg_time:.4f}')
eval_summary.write(f'Finish evaluation... Average Frame EPE: {avg_frame_epe:.4f} | | Time: {avg_time:.4f}\n')
eval_summary.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--height', type=int, default=240)
parser.add_argument('--width', type=int, default=432)
parser.add_argument('--raft_model_path', default='weights/raft-things.pth', type=str)
parser.add_argument('--fc_model_path', default='weights/recurrent_flow_completion.pth', type=str)
parser.add_argument('--dataset', choices=['davis', 'youtube-vos'], type=str)
parser.add_argument('--video_root', default='dataset_root', type=str)
parser.add_argument('--mask_root', default='mask_root', type=str)
parser.add_argument('--flow_root', default='flow_ground_truth_root', type=str)
parser.add_argument('--load_flow', default=False, type=bool)
parser.add_argument("--raft_iter", type=int, default=20)
parser.add_argument('--save_results', action='store_true')
parser.add_argument('--num_workers', default=4, type=int)
args = parser.parse_args()
main_worker(args)
|