File size: 4,870 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from .update import BasicUpdateBlock, SmallUpdateBlock
from .extractor import BasicEncoder, SmallEncoder
from .corr import CorrBlock, AlternateCorrBlock
from .utils.utils import bilinear_sampler, coords_grid, upflow8

try:
    autocast = torch.cuda.amp.autocast
except:
    # dummy autocast for PyTorch < 1.6
    class autocast:
        def __init__(self, enabled):
            pass
        def __enter__(self):
            pass
        def __exit__(self, *args):
            pass


class RAFT(nn.Module):
    def __init__(self, args):
        super(RAFT, self).__init__()
        self.args = args

        if args.small:
            self.hidden_dim = hdim = 96
            self.context_dim = cdim = 64
            args.corr_levels = 4
            args.corr_radius = 3

        else:
            self.hidden_dim = hdim = 128
            self.context_dim = cdim = 128
            args.corr_levels = 4
            args.corr_radius = 4

        if 'dropout' not in args._get_kwargs():
            args.dropout = 0

        if 'alternate_corr' not in args._get_kwargs():
            args.alternate_corr = False
        
        # feature network, context network, and update block
        if args.small:
            self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout)
            self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout)
            self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim)

        else:
            self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout)
            self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout)
            self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim)


    def freeze_bn(self):
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()

    def initialize_flow(self, img):
        """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
        N, C, H, W = img.shape
        coords0 = coords_grid(N, H//8, W//8).to(img.device)
        coords1 = coords_grid(N, H//8, W//8).to(img.device)

        # optical flow computed as difference: flow = coords1 - coords0
        return coords0, coords1

    def upsample_flow(self, flow, mask):
        """ Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
        N, _, H, W = flow.shape
        mask = mask.view(N, 1, 9, 8, 8, H, W)
        mask = torch.softmax(mask, dim=2)

        up_flow = F.unfold(8 * flow, [3,3], padding=1)
        up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)

        up_flow = torch.sum(mask * up_flow, dim=2)
        up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
        return up_flow.reshape(N, 2, 8*H, 8*W)


    def forward(self, image1, image2, iters=12, flow_init=None, test_mode=True):
        """ Estimate optical flow between pair of frames """

        # image1 = 2 * (image1 / 255.0) - 1.0
        # image2 = 2 * (image2 / 255.0) - 1.0

        image1 = image1.contiguous()
        image2 = image2.contiguous()

        hdim = self.hidden_dim
        cdim = self.context_dim

        # run the feature network
        with autocast(enabled=self.args.mixed_precision):
            fmap1, fmap2 = self.fnet([image1, image2])

        fmap1 = fmap1.float()
        fmap2 = fmap2.float()
        
        if self.args.alternate_corr:
            corr_fn = AlternateCorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
        else:
            corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius)

        # run the context network
        with autocast(enabled=self.args.mixed_precision):
            cnet = self.cnet(image1)
            net, inp = torch.split(cnet, [hdim, cdim], dim=1)
            net = torch.tanh(net)
            inp = torch.relu(inp)

        coords0, coords1 = self.initialize_flow(image1)

        if flow_init is not None:
            coords1 = coords1 + flow_init

        flow_predictions = []
        for itr in range(iters):
            coords1 = coords1.detach()
            corr = corr_fn(coords1) # index correlation volume

            flow = coords1 - coords0
            with autocast(enabled=self.args.mixed_precision):
                net, up_mask, delta_flow = self.update_block(net, inp, corr, flow)

            # F(t+1) = F(t) + \Delta(t)
            coords1 = coords1 + delta_flow

            # upsample predictions
            if up_mask is None:
                flow_up = upflow8(coords1 - coords0)
            else:
                flow_up = self.upsample_flow(coords1 - coords0, up_mask)

            flow_predictions.append(flow_up)

        if test_mode:
            return coords1 - coords0, flow_up

        return flow_predictions