Spaces:
Running
on
A10G
Running
on
A10G
File size: 36,044 Bytes
320e465 296e4e0 6668a85 296e4e0 d304d53 296e4e0 d304d53 320e465 2f89268 320e465 2f89268 320e465 2f89268 320e465 2f89268 c09c992 2f89268 8e14395 320e465 2f89268 320e465 2f89268 320e465 2f89268 320e465 2f89268 320e465 2f89268 320e465 2f89268 320e465 2f89268 320e465 2f89268 320e465 6668a85 c1637a6 320e465 2f89268 320e465 c1637a6 320e465 2f89268 320e465 2f89268 320e465 2f89268 320e465 cd00c65 320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
import sys
sys.path.append("../../")
import os
import json
import time
import psutil
import argparse
import cv2
import torch
import torchvision
import numpy as np
import gradio as gr
from tools.painter import mask_painter
from track_anything import TrackingAnything
from model.misc import get_device
from utils.download_util import load_file_from_url, download_url_to_file
# make sample videos into mp4 as git does not allow mp4 without lfs
sample_videos_path = os.path.join('/home/user/app/web-demos/hugging_face/', "test_sample/")
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281805130-e57c7016-5a6d-4d3b-9df9-b4ea6372cc87.mp4", os.path.join(sample_videos_path, "test-sample0.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281828039-5def0fc9-3a22-45b7-838d-6bf78b6772c3.mp4", os.path.join(sample_videos_path, "test-sample1.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/76810782/281807801-69b9f70c-1e56-428d-9b1b-4870c5e533a7.mp4", os.path.join(sample_videos_path, "test-sample2.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/76810782/281808625-ad98f03f-99c7-4008-acf1-3d7beb48f13b.mp4", os.path.join(sample_videos_path, "test-sample3.mp4"))
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281828066-ee09ae82-916f-4a2e-a6c7-6fc50645fd20.mp4", os.path.join(sample_videos_path, "test-sample4.mp4"))
def parse_augment():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--sam_model_type', type=str, default="vit_h")
parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications")
parser.add_argument('--mask_save', default=False)
args = parser.parse_args()
if not args.device:
args.device = str(get_device())
return args
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type":["click"],
"input_point":click_state[0],
"input_label":click_state[1],
"multimask_output":"True",
}
return prompt
# extract frames from upload video
def get_frames_from_video(video_input, video_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
video_path = video_input
frames = []
user_name = time.time()
status_ok = True
operation_log = [("[Must Do]", "Click image"), (": Video uploaded! Try to click the image shown in step2 to add masks.\n", None)]
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if length >= 500:
operation_log = [("You uploaded a video with more than 500 frames. Stop the video extraction. Kindly lower the video frame rate to a value below 500. We highly recommend deploying the demo locally for long video processing.", "Error")]
ret, frame = cap.read()
if ret == True:
original_h, original_w = frame.shape[:2]
scale_factor = min(1, 1280/max(original_h, original_w))
target_h, target_w = int(original_h*scale_factor), int(original_w*scale_factor)
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
status_ok = False
else:
while cap.isOpened():
ret, frame = cap.read()
if ret == True:
# resize input image
original_h, original_w = frame.shape[:2]
scale_factor = min(1, 1280/max(original_h, original_w))
target_h, target_w = int(original_h*scale_factor), int(original_w*scale_factor)
if scale_factor != 1:
frame = cv2.resize(frame, (target_w, target_h))
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
else:
break
t = len(frames)
if t > 0:
print(f'Inp video shape: t_{t}, s_{original_h}x{original_w} to s_{target_h}x{target_w}')
else:
print(f'Inp video shape: t_{t}, no input video!!!')
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
status_ok = False
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
# initialize video_state
if frames[0].shape[0] > 720 or frames[0].shape[1] > 720:
operation_log = [(f"Video uploaded! Try to click the image shown in step2 to add masks. (You uploaded a video with a size of {original_w}x{original_h}, and the length of its longest edge exceeds 720 pixels. We may resize the input video during processing.)", "Normal")]
video_state = {
"user_name": user_name,
"video_name": os.path.split(video_path)[-1],
"origin_images": frames,
"painted_images": frames.copy(),
"masks": [np.zeros((target_h, target_w), np.uint8)]*len(frames),
"logits": [None]*len(frames),
"select_frame_number": 0,
"fps": fps
}
video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), length, (original_w, original_h))
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
return video_state, video_info, video_state["origin_images"][0], gr.update(visible=status_ok, maximum=len(frames), value=1), gr.update(visible=status_ok, maximum=len(frames), value=len(frames)), \
gr.update(visible=status_ok), gr.update(visible=status_ok), \
gr.update(visible=status_ok), gr.update(visible=status_ok),\
gr.update(visible=status_ok), gr.update(visible=status_ok), \
gr.update(visible=status_ok), gr.update(visible=status_ok), \
gr.update(visible=status_ok), gr.update(visible=status_ok), \
gr.update(visible=status_ok), gr.update(visible=status_ok, choices=[], value=[]), \
gr.update(visible=True, value=operation_log), gr.update(visible=status_ok, value=operation_log)
# get the select frame from gradio slider
def select_template(image_selection_slider, video_state, interactive_state, mask_dropdown):
# images = video_state[1]
image_selection_slider -= 1
video_state["select_frame_number"] = image_selection_slider
# once select a new template frame, set the image in sam
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])
operation_log = [("",""), ("Select tracking start frame {}. Try to click the image to add masks for tracking.".format(image_selection_slider),"Normal")]
return video_state["painted_images"][image_selection_slider], video_state, interactive_state, operation_log, operation_log
# set the tracking end frame
def get_end_number(track_pause_number_slider, video_state, interactive_state):
interactive_state["track_end_number"] = track_pause_number_slider
operation_log = [("",""),("Select tracking finish frame {}.Try to click the image to add masks for tracking.".format(track_pause_number_slider),"Normal")]
return video_state["painted_images"][track_pause_number_slider],interactive_state, operation_log, operation_log
# use sam to get the mask
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
interactive_state["positive_click_times"] += 1
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
interactive_state["negative_click_times"] += 1
# prompt for sam model
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]])
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=video_state["origin_images"][video_state["select_frame_number"]],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
video_state["masks"][video_state["select_frame_number"]] = mask
video_state["logits"][video_state["select_frame_number"]] = logit
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
operation_log = [("[Must Do]", "Add mask"), (": add the current displayed mask for video segmentation.\n", None),
("[Optional]", "Remove mask"), (": remove all added masks.\n", None),
("[Optional]", "Clear clicks"), (": clear current displayed mask.\n", None),
("[Optional]", "Click image"), (": Try to click the image shown in step2 if you want to generate more masks.\n", None)]
return painted_image, video_state, interactive_state, operation_log, operation_log
def add_multi_mask(video_state, interactive_state, mask_dropdown):
try:
mask = video_state["masks"][video_state["select_frame_number"]]
interactive_state["multi_mask"]["masks"].append(mask)
interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
select_frame, _, _ = show_mask(video_state, interactive_state, mask_dropdown)
operation_log = [("",""),("Added a mask, use the mask select for target tracking or inpainting.","Normal")]
except:
operation_log = [("Please click the image in step2 to generate masks.", "Error"), ("","")]
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]], operation_log, operation_log
def clear_click(video_state, click_state):
click_state = [[],[]]
template_frame = video_state["origin_images"][video_state["select_frame_number"]]
operation_log = [("",""), ("Cleared points history and refresh the image.","Normal")]
return template_frame, click_state, operation_log, operation_log
def remove_multi_mask(interactive_state, mask_dropdown):
interactive_state["multi_mask"]["mask_names"]= []
interactive_state["multi_mask"]["masks"] = []
operation_log = [("",""), ("Remove all masks. Try to add new masks","Normal")]
return interactive_state, gr.update(choices=[],value=[]), operation_log, operation_log
def show_mask(video_state, interactive_state, mask_dropdown):
mask_dropdown.sort()
select_frame = video_state["origin_images"][video_state["select_frame_number"]]
for i in range(len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
mask = interactive_state["multi_mask"]["masks"][mask_number]
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
operation_log = [("",""), ("Added masks {}. If you want to do the inpainting with current masks, please go to step3, and click the Tracking button first and then Inpainting button.".format(mask_dropdown),"Normal")]
return select_frame, operation_log, operation_log
# tracking vos
def vos_tracking_video(video_state, interactive_state, mask_dropdown):
operation_log = [("",""), ("Tracking finished! Try to click the Inpainting button to get the inpainting result.","Normal")]
model.cutie.clear_memory()
if interactive_state["track_end_number"]:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
else:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
if interactive_state["multi_mask"]["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1,len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
video_state["masks"][video_state["select_frame_number"]]= template_mask
else:
template_mask = video_state["masks"][video_state["select_frame_number"]]
fps = video_state["fps"]
# operation error
if len(np.unique(template_mask))==1:
template_mask[0][0]=1
operation_log = [("Please add at least one mask to track by clicking the image in step2.","Error"), ("","")]
# return video_output, video_state, interactive_state, operation_error
masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask)
# clear GPU memory
model.cutie.clear_memory()
if interactive_state["track_end_number"]:
video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks
video_state["logits"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = logits
video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images
else:
video_state["masks"][video_state["select_frame_number"]:] = masks
video_state["logits"][video_state["select_frame_number"]:] = logits
video_state["painted_images"][video_state["select_frame_number"]:] = painted_images
video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/track/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
interactive_state["inference_times"] += 1
print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"],
interactive_state["positive_click_times"]+interactive_state["negative_click_times"],
interactive_state["positive_click_times"],
interactive_state["negative_click_times"]))
#### shanggao code for mask save
if interactive_state["mask_save"]:
if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])):
os.makedirs('./result/mask/{}'.format(video_state["video_name"].split('.')[0]))
i = 0
print("save mask")
for mask in video_state["masks"]:
np.save(os.path.join('./result/mask/{}'.format(video_state["video_name"].split('.')[0]), '{:05d}.npy'.format(i)), mask)
i+=1
# save_mask(video_state["masks"], video_state["video_name"])
#### shanggao code for mask save
return video_output, video_state, interactive_state, operation_log, operation_log
# inpaint
def inpaint_video(video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown):
operation_log = [("",""), ("Inpainting finished!","Normal")]
frames = np.asarray(video_state["origin_images"])
fps = video_state["fps"]
inpaint_masks = np.asarray(video_state["masks"])
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
# convert mask_dropdown to mask numbers
inpaint_mask_numbers = [int(mask_dropdown[i].split("_")[1]) for i in range(len(mask_dropdown))]
# interate through all masks and remove the masks that are not in mask_dropdown
unique_masks = np.unique(inpaint_masks)
num_masks = len(unique_masks) - 1
for i in range(1, num_masks + 1):
if i in inpaint_mask_numbers:
continue
inpaint_masks[inpaint_masks==i] = 0
# inpaint for videos
inpainted_frames = model.baseinpainter.inpaint(frames,
inpaint_masks,
ratio=resize_ratio_number,
dilate_radius=dilate_radius_number,
raft_iter=raft_iter_number,
subvideo_length=subvideo_length_number,
neighbor_length=neighbor_length_number,
ref_stride=ref_stride_number) # numpy array, T, H, W, 3
video_output = generate_video_from_frames(inpainted_frames, output_path="./result/inpaint/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video
return video_output, operation_log, operation_log
# generate video after vos inference
def generate_video_from_frames(frames, output_path, fps=30):
"""
Generates a video from a list of frames.
Args:
frames (list of numpy arrays): The frames to include in the video.
output_path (str): The path to save the generated video.
fps (int, optional): The frame rate of the output video. Defaults to 30.
"""
frames = torch.from_numpy(np.asarray(frames))
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
return output_path
def restart():
operation_log = [("",""), ("Try to upload your video and click the Get video info button to get started! (Kindly ensure that the uploaded video consists of fewer than 500 frames in total)", "Normal")]
return {
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
}, {
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}, [[],[]], None, None, None, \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), "", \
gr.update(visible=True, value=operation_log), gr.update(visible=False, value=operation_log)
# args, defined in track_anything.py
args = parse_augment()
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/'
sam_checkpoint_url_dict = {
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
}
checkpoint_fodler = os.path.join('..', '..', 'weights')
sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_fodler)
cutie_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'cutie-base-mega.pth'), checkpoint_fodler)
propainter_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'ProPainter.pth'), checkpoint_fodler)
raft_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'raft-things.pth'), checkpoint_fodler)
flow_completion_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'), checkpoint_fodler)
# initialize sam, cutie, propainter models
model = TrackingAnything(sam_checkpoint, cutie_checkpoint, propainter_checkpoint, raft_checkpoint, flow_completion_checkpoint, args)
title = r"""<h1 align="center">ProPainter: Improving Propagation and Transformer for Video Inpainting</h1>"""
description = r"""
<center><img src='https://github.com/sczhou/ProPainter/raw/main/assets/propainter_logo1_glow.png' alt='Propainter logo' style="width:180px; margin-bottom:20px"></center>
<b>Official Gradio demo</b> for <a href='https://github.com/sczhou/ProPainter' target='_blank'><b>Improving Propagation and Transformer for Video Inpainting (ICCV 2023)</b></a>.<br>
π₯ Propainter is a robust inpainting algorithm.<br>
π€ Try to drop your video, add the masks and get the the inpainting results!<br>
"""
article = r"""
If ProPainter is helpful, please help to β the <a href='https://github.com/sczhou/ProPainter' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/sczhou/ProPainter?style=social)](https://github.com/sczhou/ProPainter)
---
π **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{zhou2023propainter,
title={{ProPainter}: Improving Propagation and Transformer for Video Inpainting},
author={Zhou, Shangchen and Li, Chongyi and Chan, Kelvin C.K and Loy, Chen Change},
booktitle={Proceedings of IEEE International Conference on Computer Vision (ICCV)},
year={2023}
}
```
π **License**
<br>
This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>.
Redistribution and use for non-commercial purposes should follow this license.
π§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
<div>
π€ Find Me:
<a href="https://twitter.com/ShangchenZhou"><img style="margin-top:0.5em; margin-bottom:0.5em" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a>
<a href="https://github.com/sczhou"><img style="margin-top:0.5em; margin-bottom:2em" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a>
</div>
"""
css = """
.gradio-container {width: 85% !important}
.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important;}
span.svelte-s1r2yt {font-size: 17px !important; font-weight: bold !important; color: #d30f2f !important;}
button {border-radius: 8px !important;}
.add_button {background-color: #4CAF50 !important;}
.remove_button {background-color: #f44336 !important;}
.clear_button {background-color: gray !important;}
.mask_button_group {gap: 10px !important;}
.video {height: 300px !important;}
.image {height: 300px !important;}
.video .wrap.svelte-lcpz3o {display: flex !important; align-items: center !important; justify-content: center !important;}
.video .wrap.svelte-lcpz3o > :first-child {height: 100% !important;}
.margin_center {width: 50% !important; margin: auto !important;}
.jc_center {justify-content: center !important;}
"""
with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as iface:
click_state = gr.State([[],[]])
interactive_state = gr.State({
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}
)
video_state = gr.State(
{
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
}
)
gr.Markdown(title)
gr.Markdown(description)
with gr.Group(elem_classes="gr-monochrome-group"):
with gr.Row():
with gr.Accordion('ProPainter Parameters (click to expand)', open=False):
with gr.Row():
resize_ratio_number = gr.Slider(label='Resize ratio',
minimum=0.01,
maximum=1.0,
step=0.01,
value=1.0)
raft_iter_number = gr.Slider(label='Iterations for RAFT inference.',
minimum=5,
maximum=20,
step=1,
value=20,)
with gr.Row():
dilate_radius_number = gr.Slider(label='Mask dilation for video and flow masking.',
minimum=0,
maximum=10,
step=1,
value=8,)
subvideo_length_number = gr.Slider(label='Length of sub-video for long video inference.',
minimum=40,
maximum=200,
step=1,
value=80,)
with gr.Row():
neighbor_length_number = gr.Slider(label='Length of local neighboring frames.',
minimum=5,
maximum=20,
step=1,
value=10,)
ref_stride_number = gr.Slider(label='Stride of global reference frames.',
minimum=5,
maximum=20,
step=1,
value=10,)
with gr.Column():
# input video
gr.Markdown("## Step1: Upload video")
with gr.Row(equal_height=True):
with gr.Column(scale=2):
video_input = gr.Video(elem_classes="video")
extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary")
with gr.Column(scale=2):
run_status = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get video info button to get started! (Kindly ensure that the uploaded video consists of fewer than 500 frames in total)", "Normal")],
color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"})
video_info = gr.Textbox(label="Video Info")
# add masks
step2_title = gr.Markdown("---\n## Step2: Add masks", visible=False)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track start frame", visible=False)
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False)
with gr.Column(scale=2, elem_classes="jc_center"):
run_status2 = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get video info button to get started! (Kindly ensure that the uploaded video consists of fewer than 500 frames in total)", "Normal")],
color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"},
visible=False)
with gr.Column():
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point prompt",
interactive=True,
visible=False,
min_width=100,
scale=1,)
with gr.Row(scale=2, elem_classes="mask_button_group"):
Add_mask_button = gr.Button(value="Add mask", interactive=True, visible=False, elem_classes="add_button")
remove_mask_button = gr.Button(value="Remove mask", interactive=True, visible=False, elem_classes="remove_button")
clear_button_click = gr.Button(value="Clear clicks", interactive=True, visible=False, elem_classes="clear_button")
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask selection", info=".", visible=False)
# output video
step3_title = gr.Markdown("---\n## Step3: Track masks and get the inpainting result", visible=False)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
tracking_video_output = gr.Video(visible=False, elem_classes="video")
tracking_video_predict_button = gr.Button(value="1. Tracking", visible=False, elem_classes="margin_center")
with gr.Column(scale=2):
inpaiting_video_output = gr.Video(visible=False, elem_classes="video")
inpaint_video_predict_button = gr.Button(value="2. Inpainting", visible=False, elem_classes="margin_center")
# first step: get the video information
extract_frames_button.click(
fn=get_frames_from_video,
inputs=[
video_input, video_state
],
outputs=[video_state, video_info, template_frame,
image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, Add_mask_button, template_frame,
tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button, inpaint_video_predict_button, step2_title, step3_title,mask_dropdown, run_status, run_status2]
)
# second step: select images from slider
image_selection_slider.release(fn=select_template,
inputs=[image_selection_slider, video_state, interactive_state],
outputs=[template_frame, video_state, interactive_state, run_status, run_status2], api_name="select_image")
track_pause_number_slider.release(fn=get_end_number,
inputs=[track_pause_number_slider, video_state, interactive_state],
outputs=[template_frame, interactive_state, run_status, run_status2], api_name="end_image")
# click select image to get mask using sam
template_frame.select(
fn=sam_refine,
inputs=[video_state, point_prompt, click_state, interactive_state],
outputs=[template_frame, video_state, interactive_state, run_status, run_status2]
)
# add different mask
Add_mask_button.click(
fn=add_multi_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, template_frame, click_state, run_status, run_status2]
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, run_status, run_status2]
)
# tracking video from select image and mask
tracking_video_predict_button.click(
fn=vos_tracking_video,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[tracking_video_output, video_state, interactive_state, run_status, run_status2]
)
# inpaint video from select image and mask
inpaint_video_predict_button.click(
fn=inpaint_video,
inputs=[video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown],
outputs=[inpaiting_video_output, run_status, run_status2]
)
# click to get mask
mask_dropdown.change(
fn=show_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[template_frame, run_status, run_status2]
)
# clear input
video_input.change(
fn=restart,
inputs=[],
outputs=[
video_state,
interactive_state,
click_state,
tracking_video_output, inpaiting_video_output,
template_frame,
tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click,
Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2
],
queue=False,
show_progress=False)
video_input.clear(
fn=restart,
inputs=[],
outputs=[
video_state,
interactive_state,
click_state,
tracking_video_output, inpaiting_video_output,
template_frame,
tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click,
Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2
],
queue=False,
show_progress=False)
# points clear
clear_button_click.click(
fn = clear_click,
inputs = [video_state, click_state,],
outputs = [template_frame,click_state, run_status, run_status2],
)
# set example
gr.Markdown("## Examples")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0.mp4", "test-sample1.mp4", "test-sample2.mp4", "test-sample3.mp4", "test-sample4.mp4"]],
inputs=[video_input],
)
gr.Markdown(article)
iface.queue(concurrency_count=1)
iface.launch(debug=True) |