Spaces:
Running
on
A10G
Running
on
A10G
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class FlowHead(nn.Module): | |
def __init__(self, input_dim=128, hidden_dim=256): | |
super(FlowHead, self).__init__() | |
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) | |
self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
return self.conv2(self.relu(self.conv1(x))) | |
class ConvGRU(nn.Module): | |
def __init__(self, hidden_dim=128, input_dim=192+128): | |
super(ConvGRU, self).__init__() | |
self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) | |
self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) | |
self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) | |
def forward(self, h, x): | |
hx = torch.cat([h, x], dim=1) | |
z = torch.sigmoid(self.convz(hx)) | |
r = torch.sigmoid(self.convr(hx)) | |
q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1))) | |
h = (1-z) * h + z * q | |
return h | |
class SepConvGRU(nn.Module): | |
def __init__(self, hidden_dim=128, input_dim=192+128): | |
super(SepConvGRU, self).__init__() | |
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) | |
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) | |
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) | |
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) | |
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) | |
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) | |
def forward(self, h, x): | |
# horizontal | |
hx = torch.cat([h, x], dim=1) | |
z = torch.sigmoid(self.convz1(hx)) | |
r = torch.sigmoid(self.convr1(hx)) | |
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) | |
h = (1-z) * h + z * q | |
# vertical | |
hx = torch.cat([h, x], dim=1) | |
z = torch.sigmoid(self.convz2(hx)) | |
r = torch.sigmoid(self.convr2(hx)) | |
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) | |
h = (1-z) * h + z * q | |
return h | |
class SmallMotionEncoder(nn.Module): | |
def __init__(self, args): | |
super(SmallMotionEncoder, self).__init__() | |
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 | |
self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0) | |
self.convf1 = nn.Conv2d(2, 64, 7, padding=3) | |
self.convf2 = nn.Conv2d(64, 32, 3, padding=1) | |
self.conv = nn.Conv2d(128, 80, 3, padding=1) | |
def forward(self, flow, corr): | |
cor = F.relu(self.convc1(corr)) | |
flo = F.relu(self.convf1(flow)) | |
flo = F.relu(self.convf2(flo)) | |
cor_flo = torch.cat([cor, flo], dim=1) | |
out = F.relu(self.conv(cor_flo)) | |
return torch.cat([out, flow], dim=1) | |
class BasicMotionEncoder(nn.Module): | |
def __init__(self, args): | |
super(BasicMotionEncoder, self).__init__() | |
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 | |
self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0) | |
self.convc2 = nn.Conv2d(256, 192, 3, padding=1) | |
self.convf1 = nn.Conv2d(2, 128, 7, padding=3) | |
self.convf2 = nn.Conv2d(128, 64, 3, padding=1) | |
self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1) | |
def forward(self, flow, corr): | |
cor = F.relu(self.convc1(corr)) | |
cor = F.relu(self.convc2(cor)) | |
flo = F.relu(self.convf1(flow)) | |
flo = F.relu(self.convf2(flo)) | |
cor_flo = torch.cat([cor, flo], dim=1) | |
out = F.relu(self.conv(cor_flo)) | |
return torch.cat([out, flow], dim=1) | |
class SmallUpdateBlock(nn.Module): | |
def __init__(self, args, hidden_dim=96): | |
super(SmallUpdateBlock, self).__init__() | |
self.encoder = SmallMotionEncoder(args) | |
self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64) | |
self.flow_head = FlowHead(hidden_dim, hidden_dim=128) | |
def forward(self, net, inp, corr, flow): | |
motion_features = self.encoder(flow, corr) | |
inp = torch.cat([inp, motion_features], dim=1) | |
net = self.gru(net, inp) | |
delta_flow = self.flow_head(net) | |
return net, None, delta_flow | |
class BasicUpdateBlock(nn.Module): | |
def __init__(self, args, hidden_dim=128, input_dim=128): | |
super(BasicUpdateBlock, self).__init__() | |
self.args = args | |
self.encoder = BasicMotionEncoder(args) | |
self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim) | |
self.flow_head = FlowHead(hidden_dim, hidden_dim=256) | |
self.mask = nn.Sequential( | |
nn.Conv2d(128, 256, 3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 64*9, 1, padding=0)) | |
def forward(self, net, inp, corr, flow, upsample=True): | |
motion_features = self.encoder(flow, corr) | |
inp = torch.cat([inp, motion_features], dim=1) | |
net = self.gru(net, inp) | |
delta_flow = self.flow_head(net) | |
# scale mask to balence gradients | |
mask = .25 * self.mask(net) | |
return net, mask, delta_flow | |