ProPainter / core /trainer_flow_w_edge.py
sczhou's picture
init code
320e465
raw
history blame
15.6 kB
import os
import glob
import logging
import importlib
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from core.prefetch_dataloader import PrefetchDataLoader, CPUPrefetcher
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from core.lr_scheduler import MultiStepRestartLR, CosineAnnealingRestartLR
from core.dataset import TrainDataset
from model.modules.flow_comp_raft import RAFT_bi, FlowLoss, EdgeLoss
# from skimage.feature import canny
from model.canny.canny_filter import Canny
from RAFT.utils.flow_viz_pt import flow_to_image
class Trainer:
def __init__(self, config):
self.config = config
self.epoch = 0
self.iteration = 0
self.num_local_frames = config['train_data_loader']['num_local_frames']
self.num_ref_frames = config['train_data_loader']['num_ref_frames']
# setup data set and data loader
self.train_dataset = TrainDataset(config['train_data_loader'])
self.train_sampler = None
self.train_args = config['trainer']
if config['distributed']:
self.train_sampler = DistributedSampler(
self.train_dataset,
num_replicas=config['world_size'],
rank=config['global_rank'])
dataloader_args = dict(
dataset=self.train_dataset,
batch_size=self.train_args['batch_size'] // config['world_size'],
shuffle=(self.train_sampler is None),
num_workers=self.train_args['num_workers'],
sampler=self.train_sampler,
drop_last=True)
self.train_loader = PrefetchDataLoader(self.train_args['num_prefetch_queue'], **dataloader_args)
self.prefetcher = CPUPrefetcher(self.train_loader)
# set raft
self.fix_raft = RAFT_bi(device = self.config['device'])
self.flow_loss = FlowLoss()
self.edge_loss = EdgeLoss()
self.canny = Canny(sigma=(2,2), low_threshold=0.1, high_threshold=0.2)
# setup models including generator and discriminator
net = importlib.import_module('model.' + config['model']['net'])
self.netG = net.RecurrentFlowCompleteNet()
# print(self.netG)
self.netG = self.netG.to(self.config['device'])
# setup optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
self.load()
if config['distributed']:
self.netG = DDP(self.netG,
device_ids=[self.config['local_rank']],
output_device=self.config['local_rank'],
broadcast_buffers=True,
find_unused_parameters=True)
# set summary writer
self.dis_writer = None
self.gen_writer = None
self.summary = {}
if self.config['global_rank'] == 0 or (not config['distributed']):
self.gen_writer = SummaryWriter(
os.path.join(config['save_dir'], 'gen'))
def setup_optimizers(self):
"""Set up optimizers."""
backbone_params = []
for name, param in self.netG.named_parameters():
if param.requires_grad:
backbone_params.append(param)
else:
print(f'Params {name} will not be optimized.')
optim_params = [
{
'params': backbone_params,
'lr': self.config['trainer']['lr']
},
]
self.optimG = torch.optim.Adam(optim_params,
betas=(self.config['trainer']['beta1'],
self.config['trainer']['beta2']))
def setup_schedulers(self):
"""Set up schedulers."""
scheduler_opt = self.config['trainer']['scheduler']
scheduler_type = scheduler_opt.pop('type')
if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']:
self.scheG = MultiStepRestartLR(
self.optimG,
milestones=scheduler_opt['milestones'],
gamma=scheduler_opt['gamma'])
elif scheduler_type == 'CosineAnnealingRestartLR':
self.scheG = CosineAnnealingRestartLR(
self.optimG,
periods=scheduler_opt['periods'],
restart_weights=scheduler_opt['restart_weights'])
else:
raise NotImplementedError(
f'Scheduler {scheduler_type} is not implemented yet.')
def update_learning_rate(self):
"""Update learning rate."""
self.scheG.step()
def get_lr(self):
"""Get current learning rate."""
return self.optimG.param_groups[0]['lr']
def add_summary(self, writer, name, val):
"""Add tensorboard summary."""
if name not in self.summary:
self.summary[name] = 0
self.summary[name] += val
n = self.train_args['log_freq']
if writer is not None and self.iteration % n == 0:
writer.add_scalar(name, self.summary[name] / n, self.iteration)
self.summary[name] = 0
def load(self):
"""Load netG."""
# get the latest checkpoint
model_path = self.config['save_dir']
if os.path.isfile(os.path.join(model_path, 'latest.ckpt')):
latest_epoch = open(os.path.join(model_path, 'latest.ckpt'),
'r').read().splitlines()[-1]
else:
ckpts = [
os.path.basename(i).split('.pth')[0]
for i in glob.glob(os.path.join(model_path, '*.pth'))
]
ckpts.sort()
latest_epoch = ckpts[-1][4:] if len(ckpts) > 0 else None
if latest_epoch is not None:
gen_path = os.path.join(model_path, f'gen_{int(latest_epoch):06d}.pth')
opt_path = os.path.join(model_path,f'opt_{int(latest_epoch):06d}.pth')
if self.config['global_rank'] == 0:
print(f'Loading model from {gen_path}...')
dataG = torch.load(gen_path, map_location=self.config['device'])
self.netG.load_state_dict(dataG)
data_opt = torch.load(opt_path, map_location=self.config['device'])
self.optimG.load_state_dict(data_opt['optimG'])
self.scheG.load_state_dict(data_opt['scheG'])
self.epoch = data_opt['epoch']
self.iteration = data_opt['iteration']
else:
if self.config['global_rank'] == 0:
print('Warnning: There is no trained model found.'
'An initialized model will be used.')
def save(self, it):
"""Save parameters every eval_epoch"""
if self.config['global_rank'] == 0:
# configure path
gen_path = os.path.join(self.config['save_dir'],
f'gen_{it:06d}.pth')
opt_path = os.path.join(self.config['save_dir'],
f'opt_{it:06d}.pth')
print(f'\nsaving model to {gen_path} ...')
# remove .module for saving
if isinstance(self.netG, torch.nn.DataParallel) or isinstance(self.netG, DDP):
netG = self.netG.module
else:
netG = self.netG
# save checkpoints
torch.save(netG.state_dict(), gen_path)
torch.save(
{
'epoch': self.epoch,
'iteration': self.iteration,
'optimG': self.optimG.state_dict(),
'scheG': self.scheG.state_dict()
}, opt_path)
latest_path = os.path.join(self.config['save_dir'], 'latest.ckpt')
os.system(f"echo {it:06d} > {latest_path}")
def train(self):
"""training entry"""
pbar = range(int(self.train_args['iterations']))
if self.config['global_rank'] == 0:
pbar = tqdm(pbar,
initial=self.iteration,
dynamic_ncols=True,
smoothing=0.01)
os.makedirs('logs', exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s %(filename)s[line:%(lineno)d]"
"%(levelname)s %(message)s",
datefmt="%a, %d %b %Y %H:%M:%S",
filename=f"logs/{self.config['save_dir'].split('/')[-1]}.log",
filemode='w')
while True:
self.epoch += 1
self.prefetcher.reset()
if self.config['distributed']:
self.train_sampler.set_epoch(self.epoch)
self._train_epoch(pbar)
if self.iteration > self.train_args['iterations']:
break
print('\nEnd training....')
# def get_edges(self, flows): # fgvc
# # (b, t, 2, H, W)
# b, t, _, h, w = flows.shape
# flows = flows.view(-1, 2, h, w)
# flows_list = flows.permute(0, 2, 3, 1).cpu().numpy()
# edges = []
# for f in list(flows_list):
# flows_gray = (f[:, :, 0] ** 2 + f[:, :, 1] ** 2) ** 0.5
# if flows_gray.max() < 1:
# flows_gray = flows_gray*0
# else:
# flows_gray = flows_gray / flows_gray.max()
# edge = canny(flows_gray, sigma=2, low_threshold=0.1, high_threshold=0.2) # fgvc
# edge = torch.from_numpy(edge).view(1, 1, h, w).float()
# edges.append(edge)
# edges = torch.stack(edges, dim=0).to(self.config['device'])
# edges = edges.view(b, t, 1, h, w)
# return edges
def get_edges(self, flows):
# (b, t, 2, H, W)
b, t, _, h, w = flows.shape
flows = flows.view(-1, 2, h, w)
flows_gray = (flows[:, 0, None] ** 2 + flows[:, 1, None] ** 2) ** 0.5
if flows_gray.max() < 1:
flows_gray = flows_gray*0
else:
flows_gray = flows_gray / flows_gray.max()
magnitude, edges = self.canny(flows_gray.float())
edges = edges.view(b, t, 1, h, w)
return edges
def _train_epoch(self, pbar):
"""Process input and calculate loss every training epoch"""
device = self.config['device']
train_data = self.prefetcher.next()
while train_data is not None:
self.iteration += 1
frames, masks, flows_f, flows_b, _ = train_data
frames, masks = frames.to(device), masks.to(device)
masks = masks.float()
l_t = self.num_local_frames
b, t, c, h, w = frames.size()
gt_local_frames = frames[:, :l_t, ...]
local_masks = masks[:, :l_t, ...].contiguous()
# get gt optical flow
if flows_f[0] == 'None' or flows_b[0] == 'None':
gt_flows_bi = self.fix_raft(gt_local_frames)
else:
gt_flows_bi = (flows_f.to(device), flows_b.to(device))
# get gt edge
gt_edges_forward = self.get_edges(gt_flows_bi[0])
gt_edges_backward = self.get_edges(gt_flows_bi[1])
gt_edges_bi = [gt_edges_forward, gt_edges_backward]
# complete flow
pred_flows_bi, pred_edges_bi = self.netG.module.forward_bidirect_flow(gt_flows_bi, local_masks)
# optimize net_g
self.optimG.zero_grad()
# compulte flow_loss
flow_loss, warp_loss = self.flow_loss(pred_flows_bi, gt_flows_bi, local_masks, gt_local_frames)
flow_loss = flow_loss * self.config['losses']['flow_weight']
warp_loss = warp_loss * 0.01
self.add_summary(self.gen_writer, 'loss/flow_loss', flow_loss.item())
self.add_summary(self.gen_writer, 'loss/warp_loss', warp_loss.item())
# compute edge loss
edge_loss = self.edge_loss(pred_edges_bi, gt_edges_bi, local_masks)
edge_loss = edge_loss*1.0
self.add_summary(self.gen_writer, 'loss/edge_loss', edge_loss.item())
loss = flow_loss + warp_loss + edge_loss
loss.backward()
self.optimG.step()
self.update_learning_rate()
# write image to tensorboard
# if self.iteration % 200 == 0:
if self.iteration % 200 == 0 and self.gen_writer is not None:
t = 5
# forward to cpu
gt_flows_forward_cpu = flow_to_image(gt_flows_bi[0][0]).cpu()
masked_flows_forward_cpu = (gt_flows_forward_cpu[t] * (1-local_masks[0][t].cpu())).to(gt_flows_forward_cpu)
pred_flows_forward_cpu = flow_to_image(pred_flows_bi[0][0]).cpu()
flow_results = torch.cat([gt_flows_forward_cpu[t], masked_flows_forward_cpu, pred_flows_forward_cpu[t]], 1)
self.gen_writer.add_image('img/flow-f:gt-pred', flow_results, self.iteration)
# backward to cpu
gt_flows_backward_cpu = flow_to_image(gt_flows_bi[1][0]).cpu()
masked_flows_backward_cpu = (gt_flows_backward_cpu[t] * (1-local_masks[0][t+1].cpu())).to(gt_flows_backward_cpu)
pred_flows_backward_cpu = flow_to_image(pred_flows_bi[1][0]).cpu()
flow_results = torch.cat([gt_flows_backward_cpu[t], masked_flows_backward_cpu, pred_flows_backward_cpu[t]], 1)
self.gen_writer.add_image('img/flow-b:gt-pred', flow_results, self.iteration)
# TODO: show edge
# forward
gt_edges_forward_cpu = gt_edges_bi[0][0].cpu()
masked_edges_forward_cpu = (gt_edges_forward_cpu[t] * (1-local_masks[0][t].cpu())).to(gt_edges_forward_cpu)
pred_edges_forward_cpu = pred_edges_bi[0][0].cpu()
edge_results = torch.cat([gt_edges_forward_cpu[t], masked_edges_forward_cpu, pred_edges_forward_cpu[t]], 1)
self.gen_writer.add_image('img/edge-f:gt-pred', edge_results, self.iteration)
# backward
gt_edges_backward_cpu = gt_edges_bi[1][0].cpu()
masked_edges_backward_cpu = (gt_edges_backward_cpu[t] * (1-local_masks[0][t+1].cpu())).to(gt_edges_backward_cpu)
pred_edges_backward_cpu = pred_edges_bi[1][0].cpu()
edge_results = torch.cat([gt_edges_backward_cpu[t], masked_edges_backward_cpu, pred_edges_backward_cpu[t]], 1)
self.gen_writer.add_image('img/edge-b:gt-pred', edge_results, self.iteration)
# console logs
if self.config['global_rank'] == 0:
pbar.update(1)
pbar.set_description((f"flow: {flow_loss.item():.3f}; "
f"warp: {warp_loss.item():.3f}; "
f"edge: {edge_loss.item():.3f}; "
f"lr: {self.get_lr()}"))
if self.iteration % self.train_args['log_freq'] == 0:
logging.info(f"[Iter {self.iteration}] "
f"flow: {flow_loss.item():.4f}; "
f"warp: {warp_loss.item():.4f}")
# saving models
if self.iteration % self.train_args['save_freq'] == 0:
self.save(int(self.iteration))
if self.iteration > self.train_args['iterations']:
break
train_data = self.prefetcher.next()