ProPainter / core /utils.py
sczhou's picture
init code
320e465
raw
history blame
14.2 kB
import os
import io
import cv2
import random
import numpy as np
from PIL import Image, ImageOps
import zipfile
import math
import torch
import matplotlib
import matplotlib.patches as patches
from matplotlib.path import Path
from matplotlib import pyplot as plt
from torchvision import transforms
# matplotlib.use('agg')
# ###########################################################################
# Directory IO
# ###########################################################################
def read_dirnames_under_root(root_dir):
dirnames = [
name for i, name in enumerate(sorted(os.listdir(root_dir)))
if os.path.isdir(os.path.join(root_dir, name))
]
print(f'Reading directories under {root_dir}, num: {len(dirnames)}')
return dirnames
class TrainZipReader(object):
file_dict = dict()
def __init__(self):
super(TrainZipReader, self).__init__()
@staticmethod
def build_file_dict(path):
file_dict = TrainZipReader.file_dict
if path in file_dict:
return file_dict[path]
else:
file_handle = zipfile.ZipFile(path, 'r')
file_dict[path] = file_handle
return file_dict[path]
@staticmethod
def imread(path, idx):
zfile = TrainZipReader.build_file_dict(path)
filelist = zfile.namelist()
filelist.sort()
data = zfile.read(filelist[idx])
#
im = Image.open(io.BytesIO(data))
return im
class TestZipReader(object):
file_dict = dict()
def __init__(self):
super(TestZipReader, self).__init__()
@staticmethod
def build_file_dict(path):
file_dict = TestZipReader.file_dict
if path in file_dict:
return file_dict[path]
else:
file_handle = zipfile.ZipFile(path, 'r')
file_dict[path] = file_handle
return file_dict[path]
@staticmethod
def imread(path, idx):
zfile = TestZipReader.build_file_dict(path)
filelist = zfile.namelist()
filelist.sort()
data = zfile.read(filelist[idx])
file_bytes = np.asarray(bytearray(data), dtype=np.uint8)
im = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))
# im = Image.open(io.BytesIO(data))
return im
# ###########################################################################
# Data augmentation
# ###########################################################################
def to_tensors():
return transforms.Compose([Stack(), ToTorchFormatTensor()])
class GroupRandomHorizontalFlowFlip(object):
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
"""
def __call__(self, img_group, flowF_group, flowB_group):
v = random.random()
if v < 0.5:
ret_img = [
img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group
]
ret_flowF = [ff[:, ::-1] * [-1.0, 1.0] for ff in flowF_group]
ret_flowB = [fb[:, ::-1] * [-1.0, 1.0] for fb in flowB_group]
return ret_img, ret_flowF, ret_flowB
else:
return img_group, flowF_group, flowB_group
class GroupRandomHorizontalFlip(object):
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
"""
def __call__(self, img_group, is_flow=False):
v = random.random()
if v < 0.5:
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
if is_flow:
for i in range(0, len(ret), 2):
# invert flow pixel values when flipping
ret[i] = ImageOps.invert(ret[i])
return ret
else:
return img_group
class Stack(object):
def __init__(self, roll=False):
self.roll = roll
def __call__(self, img_group):
mode = img_group[0].mode
if mode == '1':
img_group = [img.convert('L') for img in img_group]
mode = 'L'
if mode == 'L':
return np.stack([np.expand_dims(x, 2) for x in img_group], axis=2)
elif mode == 'RGB':
if self.roll:
return np.stack([np.array(x)[:, :, ::-1] for x in img_group],
axis=2)
else:
return np.stack(img_group, axis=2)
else:
raise NotImplementedError(f"Image mode {mode}")
class ToTorchFormatTensor(object):
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
def __init__(self, div=True):
self.div = div
def __call__(self, pic):
if isinstance(pic, np.ndarray):
# numpy img: [L, C, H, W]
img = torch.from_numpy(pic).permute(2, 3, 0, 1).contiguous()
else:
# handle PIL Image
img = torch.ByteTensor(torch.ByteStorage.from_buffer(
pic.tobytes()))
img = img.view(pic.size[1], pic.size[0], len(pic.mode))
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
img = img.float().div(255) if self.div else img.float()
return img
# ###########################################################################
# Create masks with random shape
# ###########################################################################
def create_random_shape_with_random_motion(video_length,
imageHeight=240,
imageWidth=432):
# get a random shape
height = random.randint(imageHeight // 3, imageHeight - 1)
width = random.randint(imageWidth // 3, imageWidth - 1)
edge_num = random.randint(6, 8)
ratio = random.randint(6, 8) / 10
region = get_random_shape(edge_num=edge_num,
ratio=ratio,
height=height,
width=width)
region_width, region_height = region.size
# get random position
x, y = random.randint(0, imageHeight - region_height), random.randint(
0, imageWidth - region_width)
velocity = get_random_velocity(max_speed=3)
m = Image.fromarray(np.zeros((imageHeight, imageWidth)).astype(np.uint8))
m.paste(region, (y, x, y + region.size[0], x + region.size[1]))
masks = [m.convert('L')]
# return fixed masks
if random.uniform(0, 1) > 0.5:
return masks * video_length
# return moving masks
for _ in range(video_length - 1):
x, y, velocity = random_move_control_points(x,
y,
imageHeight,
imageWidth,
velocity,
region.size,
maxLineAcceleration=(3,
0.5),
maxInitSpeed=3)
m = Image.fromarray(
np.zeros((imageHeight, imageWidth)).astype(np.uint8))
m.paste(region, (y, x, y + region.size[0], x + region.size[1]))
masks.append(m.convert('L'))
return masks
def create_random_shape_with_random_motion_zoom_rotation(video_length, zoomin=0.9, zoomout=1.1, rotmin=1, rotmax=10, imageHeight=240, imageWidth=432):
# get a random shape
assert zoomin < 1, "Zoom-in parameter must be smaller than 1"
assert zoomout > 1, "Zoom-out parameter must be larger than 1"
assert rotmin < rotmax, "Minimum value of rotation must be smaller than maximun value !"
height = random.randint(imageHeight//3, imageHeight-1)
width = random.randint(imageWidth//3, imageWidth-1)
edge_num = random.randint(6, 8)
ratio = random.randint(6, 8)/10
region = get_random_shape(
edge_num=edge_num, ratio=ratio, height=height, width=width)
region_width, region_height = region.size
# get random position
x, y = random.randint(
0, imageHeight-region_height), random.randint(0, imageWidth-region_width)
velocity = get_random_velocity(max_speed=3)
m = Image.fromarray(np.zeros((imageHeight, imageWidth)).astype(np.uint8))
m.paste(region, (y, x, y+region.size[0], x+region.size[1]))
masks = [m.convert('L')]
# return fixed masks
if random.uniform(0, 1) > 0.5:
return masks*video_length # -> directly copy all the base masks
# return moving masks
for _ in range(video_length-1):
x, y, velocity = random_move_control_points(
x, y, imageHeight, imageWidth, velocity, region.size, maxLineAcceleration=(3, 0.5), maxInitSpeed=3)
m = Image.fromarray(
np.zeros((imageHeight, imageWidth)).astype(np.uint8))
### add by kaidong, to simulate zoon-in, zoom-out and rotation
extra_transform = random.uniform(0, 1)
# zoom in and zoom out
if extra_transform > 0.75:
resize_coefficient = random.uniform(zoomin, zoomout)
region = region.resize((math.ceil(region_width * resize_coefficient), math.ceil(region_height * resize_coefficient)), Image.NEAREST)
m.paste(region, (y, x, y + region.size[0], x + region.size[1]))
region_width, region_height = region.size
# rotation
elif extra_transform > 0.5:
m.paste(region, (y, x, y + region.size[0], x + region.size[1]))
m = m.rotate(random.randint(rotmin, rotmax))
# region_width, region_height = region.size
### end
else:
m.paste(region, (y, x, y+region.size[0], x+region.size[1]))
masks.append(m.convert('L'))
return masks
def get_random_shape(edge_num=9, ratio=0.7, width=432, height=240):
'''
There is the initial point and 3 points per cubic bezier curve.
Thus, the curve will only pass though n points, which will be the sharp edges.
The other 2 modify the shape of the bezier curve.
edge_num, Number of possibly sharp edges
points_num, number of points in the Path
ratio, (0, 1) magnitude of the perturbation from the unit circle,
'''
points_num = edge_num*3 + 1
angles = np.linspace(0, 2*np.pi, points_num)
codes = np.full(points_num, Path.CURVE4)
codes[0] = Path.MOVETO
# Using this instead of Path.CLOSEPOLY avoids an innecessary straight line
verts = np.stack((np.cos(angles), np.sin(angles))).T * \
(2*ratio*np.random.random(points_num)+1-ratio)[:, None]
verts[-1, :] = verts[0, :]
path = Path(verts, codes)
# draw paths into images
fig = plt.figure()
ax = fig.add_subplot(111)
patch = patches.PathPatch(path, facecolor='black', lw=2)
ax.add_patch(patch)
ax.set_xlim(np.min(verts)*1.1, np.max(verts)*1.1)
ax.set_ylim(np.min(verts)*1.1, np.max(verts)*1.1)
ax.axis('off') # removes the axis to leave only the shape
fig.canvas.draw()
# convert plt images into numpy images
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape((fig.canvas.get_width_height()[::-1] + (3,)))
plt.close(fig)
# postprocess
data = cv2.resize(data, (width, height))[:, :, 0]
data = (1 - np.array(data > 0).astype(np.uint8))*255
corrdinates = np.where(data > 0)
xmin, xmax, ymin, ymax = np.min(corrdinates[0]), np.max(
corrdinates[0]), np.min(corrdinates[1]), np.max(corrdinates[1])
region = Image.fromarray(data).crop((ymin, xmin, ymax, xmax))
return region
def random_accelerate(velocity, maxAcceleration, dist='uniform'):
speed, angle = velocity
d_speed, d_angle = maxAcceleration
if dist == 'uniform':
speed += np.random.uniform(-d_speed, d_speed)
angle += np.random.uniform(-d_angle, d_angle)
elif dist == 'guassian':
speed += np.random.normal(0, d_speed / 2)
angle += np.random.normal(0, d_angle / 2)
else:
raise NotImplementedError(
f'Distribution type {dist} is not supported.')
return (speed, angle)
def get_random_velocity(max_speed=3, dist='uniform'):
if dist == 'uniform':
speed = np.random.uniform(max_speed)
elif dist == 'guassian':
speed = np.abs(np.random.normal(0, max_speed / 2))
else:
raise NotImplementedError(
f'Distribution type {dist} is not supported.')
angle = np.random.uniform(0, 2 * np.pi)
return (speed, angle)
def random_move_control_points(X,
Y,
imageHeight,
imageWidth,
lineVelocity,
region_size,
maxLineAcceleration=(3, 0.5),
maxInitSpeed=3):
region_width, region_height = region_size
speed, angle = lineVelocity
X += int(speed * np.cos(angle))
Y += int(speed * np.sin(angle))
lineVelocity = random_accelerate(lineVelocity,
maxLineAcceleration,
dist='guassian')
if ((X > imageHeight - region_height) or (X < 0)
or (Y > imageWidth - region_width) or (Y < 0)):
lineVelocity = get_random_velocity(maxInitSpeed, dist='guassian')
new_X = np.clip(X, 0, imageHeight - region_height)
new_Y = np.clip(Y, 0, imageWidth - region_width)
return new_X, new_Y, lineVelocity
if __name__ == '__main__':
trials = 10
for _ in range(trials):
video_length = 10
# The returned masks are either stationary (50%) or moving (50%)
masks = create_random_shape_with_random_motion(video_length,
imageHeight=240,
imageWidth=432)
for m in masks:
cv2.imshow('mask', np.array(m))
cv2.waitKey(500)