File size: 1,154 Bytes
2705a3e
 
 
 
 
 
 
 
 
 
 
 
61697c7
 
 
2705a3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from tamilatis.predict import TamilATISPredictor 
from tamilatis.model import JointATISModel
import numpy as np
from sklearn.preprocessing import LabelEncoder
import gradio as gr



model_name = "microsoft/xlm-align-base"
tokenizer_name = "microsoft/xlm-align-base"
num_labels = 78
num_intents = 23
checkpoint_path = "tamilatis/models/xlm_align_base.bin"
intent_encoder_path = "tamilatis/models/intent_classes.npy"
ner_encoder_path = "tamilatis/models/ner_classes.npy"

def predict_function(text):
  label_encoder = LabelEncoder()
  label_encoder.classes_ = np.load(ner_encoder_path)
  
  intent_encoder = LabelEncoder()
  intent_encoder.classes_ = np.load(intent_encoder_path)
  
  model  = JointATISModel(model_name,num_labels,num_intents)
  predictor = TamilATISPredictor(model,checkpoint_path,tokenizer_name,
                              label_encoder,intent_encoder,num_labels)
  slot_prediction, intent_preds = predictor.get_predictions(text)
  return slot_prediction, intent_preds


title = "Tamil ATIS"  
iface = gr.Interface(fn=predict_function, inputs="text", title=title,theme="huggingface",outputs=["text","text"])
iface.launch(share=True)