Spaces:
Paused
Paused
File size: 8,564 Bytes
03a856a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import argparse
import os
import random
from datetime import datetime
from pathlib import Path
from typing import List
import av
import cv2
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_echo import EchoUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echo_mimic_pose import AudioPose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid, crop_and_pad
import sys
from src.models.face_locator import FaceLocator
from moviepy.editor import VideoFileClip, AudioFileClip
from facenet_pytorch import MTCNN
from src.utils.draw_utils import FaceMeshVisualizer
import pickle
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/prompts/animation_pose.yaml")
parser.add_argument("-W", type=int, default=512)
parser.add_argument("-H", type=int, default=512)
parser.add_argument("-L", type=int, default=160)
parser.add_argument("--seed", type=int, default=420)
parser.add_argument("--facemusk_dilation_ratio", type=float, default=0.1)
parser.add_argument("--facecrop_dilation_ratio", type=float, default=0.5)
parser.add_argument("--context_frames", type=int, default=12)
parser.add_argument("--context_overlap", type=int, default=3)
parser.add_argument("--cfg", type=float, default=2.5)
parser.add_argument("--steps", type=int, default=30)
parser.add_argument("--sample_rate", type=int, default=16000)
parser.add_argument("--fps", type=int, default=24)
parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()
return args
def select_face(det_bboxes, probs):
## max face from faces that the prob is above 0.8
## box: xyxy
filtered_bboxes = []
for bbox_i in range(len(det_bboxes)):
if probs[bbox_i] > 0.8:
filtered_bboxes.append(det_bboxes[bbox_i])
if len(filtered_bboxes) == 0:
return None
sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True)
return sorted_bboxes[0]
def main():
args = parse_args()
config = OmegaConf.load(args.config)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
device = args.device
if device.__contains__("cuda") and not torch.cuda.is_available():
device = "cpu"
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
## denoising net init
if os.path.exists(config.motion_module_path):
### stage1 + stage2
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
else:
### only stage1
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
"",
subfolder="unet",
unet_additional_kwargs={
"use_motion_module": False,
"unet_use_temporal_attention": False,
"cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim
}
).to(dtype=weight_dtype, device=device)
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False
)
## face locator init
face_locator = FaceLocator(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device="cuda"
)
face_locator.load_state_dict(torch.load(config.face_locator_path))
visualizer = FaceMeshVisualizer(draw_iris=False, draw_mouse=False)
### load audio processor params
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)
### load face detector params
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device)
############# model_init finished #############
width, height = args.W, args.H
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
pipe = AudioPose2VideoPipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
face_locator=face_locator,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{args.seed}-{args.W}x{args.H}"
save_dir = Path(f"output/{date_str}/{save_dir_name}")
save_dir.mkdir(exist_ok=True, parents=True)
for ref_image_path in config["test_cases"].keys():
for file_path in config["test_cases"][ref_image_path]:
if ".wav" in file_path:
audio_path = file_path
else:
pose_dir = file_path
if args.seed is not None and args.seed > -1:
generator = torch.manual_seed(args.seed)
else:
generator = torch.manual_seed(random.randint(100, 1000000))
ref_name = Path(ref_image_path).stem
audio_name = Path(audio_path).stem
final_fps = args.fps
ref_image_pil = Image.open(ref_image_path).convert("RGB")
# ==================== face_locator =====================
pose_list = []
for index in range(len(os.listdir(pose_dir))):
tgt_musk_path = os.path.join(pose_dir, f"{index}.pkl")
with open(tgt_musk_path, "rb") as f:
tgt_kpts = pickle.load(f)
tgt_musk = visualizer.draw_landmarks((args.W, args.H), tgt_kpts)
tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB')
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2,0,1) / 255.0)
face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
video = pipe(
ref_image_pil,
audio_path,
face_mask_tensor,
width,
height,
args.L,
args.steps,
args.cfg,
generator=generator,
audio_sample_rate=args.sample_rate,
context_frames=12,
fps=final_fps,
context_overlap=3
).videos
final_length = min(video.shape[2], face_mask_tensor.shape[2])
video = torch.cat([video[:, :, :final_length, :, :], face_mask_tensor[:, :, :final_length, :, :].detach().cpu()], dim=-1)
save_videos_grid(
video,
f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4",
n_rows=2,
fps=final_fps,
)
from moviepy.editor import VideoFileClip, AudioFileClip
video_clip = VideoFileClip(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4")
audio_clip = AudioFileClip(audio_path)
video_clip = video_clip.set_audio(audio_clip)
video_clip.write_videofile(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4", codec="libx264", audio_codec="aac")
print(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4")
if __name__ == "__main__":
main()
|