File size: 4,214 Bytes
cbcd8d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
Metadata-Version: 2.1
Name: depth_pro
Version: 0.1
Summary: Inference/Network/Model code for Apple Depth Pro monocular depth estimation.
Project-URL: Homepage, https://github.com/apple/ml-depth-pro

Project-URL: Repository, https://github.com/apple/ml-depth-pro

Description-Content-Type: text/markdown

License-File: LICENSE

Requires-Dist: torch

Requires-Dist: torchvision

Requires-Dist: timm

Requires-Dist: numpy<2

Requires-Dist: pillow_heif

Requires-Dist: matplotlib



## Depth Pro: Sharp Monocular Metric Depth in Less Than a Second



This software project accompanies the research paper:

**Depth Pro: Sharp Monocular Metric Depth in Less Than a Second**, 

*Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, and Vladlen Koltun*.



![](data/depth-pro-teaser.jpg)



We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image.





The model in this repository is a reference implementation, which has been re-trained. Its performance is close to the model reported in the paper but does not match it exactly.



## Getting Started



We recommend setting up a virtual environment. Using e.g. miniconda, the `depth_pro` package can be installed via:



```bash

conda create -n depth-pro -y python=3.9

conda activate depth-pro



pip install -e .

```



To download pretrained checkpoints follow the code snippet below:

```bash

source get_pretrained_models.sh   # Files will be downloaded to `checkpoints` directory.

```



### Running from commandline



We provide a helper script to directly run the model on a single image:

```bash

# Run prediction on a single image:

depth-pro-run -i ./data/example.jpg

# Run `depth-pro-run -h` for available options.

```



### Running from python



```python

from PIL import Image

import depth_pro



# Load model and preprocessing transform

model, transform = depth_pro.create_model_and_transforms()

model.eval()



# Load and preprocess an image.

image, _, f_px = depth_pro.load_rgb(image_path)

image = transform(image)



# Run inference.

prediction = model.infer(image, f_px=f_px)

depth = prediction["depth"]  # Depth in [m].

focallength_px = prediction["focallength_px"]  # Focal length in pixels.

```





### Evaluation (boundary metrics) 



Our boundary metrics can be found under `eval/boundary_metrics.py` and used as follows:



```python

# for a depth-based dataset

boundary_f1 = SI_boundary_F1(predicted_depth, target_depth)



# for a mask-based dataset (image matting / segmentation) 

boundary_recall = SI_boundary_Recall(predicted_depth, target_mask)

```





## Citation



If you find our work useful, please cite the following paper:



```bibtex

@article{Bochkovskii2024:arxiv,

  author     = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and

               Yichao Zhou and Stephan R. Richter and Vladlen Koltun}

  title      = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second},

  journal    = {arXiv},

  year       = {2024},

}

```



## License

This sample code is released under the [LICENSE](LICENSE) terms.



The model weights are released under the [LICENSE](LICENSE) terms.



## Acknowledgements



Our codebase is built using multiple opensource contributions, please see [Acknowledgements](ACKNOWLEDGEMENTS.md) for more details.



Please check the paper for a complete list of references and datasets used in this work.