from model import model import gradio as gr import numpy as np def classify_image(image): probabilities = model.predict(image.name) # Call prediction function labels = ["Category1", "Category2", "Category3", "Category4"] # Assing labels top_labels = [labels[i] for i in np.argsort(probabilities)[::-1][:4]] top_probs = [round(float(probabilities[i]), 4) for i in np.argsort(probabilities)[::-1][:4]] demo = gr.Interface( fn=classify_image, inputs=gr.inputs.Image(), outputs=gr.outputs.Label(num_top_classes=4), title="Image Classifier", description="Upload an image and get the top 4 predicted labels with probabilities.",) demo.launch()