Spaces:
Runtime error
Runtime error
import spaces | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import torch | |
import soundfile as sf | |
from xcodec2.modeling_xcodec2 import XCodec2Model | |
import torchaudio | |
import gradio as gr | |
import tempfile | |
llasa_3b ='srinivasbilla/llasa-3b' | |
tokenizer = AutoTokenizer.from_pretrained(llasa_3b) | |
model = AutoModelForCausalLM.from_pretrained( | |
llasa_3b, | |
trust_remote_code=True, | |
use_cache=False, | |
torch_dtype=torch.bfloat16, | |
device_map='cuda', | |
return_dict=True | |
) | |
model_path = "srinivasbilla/xcodec2" | |
Codec_model = XCodec2Model.from_pretrained(model_path) | |
Codec_model.eval().cuda() | |
whisper_turbo_pipe = pipeline( | |
"automatic-speech-recognition", | |
model="openai/whisper-large-v3-turbo", | |
torch_dtype=torch.float16, | |
device='cuda', | |
) | |
def ids_to_speech_tokens(speech_ids): | |
speech_tokens_str = [] | |
for speech_id in speech_ids: | |
speech_tokens_str.append(f"<|s_{speech_id}|>") | |
return speech_tokens_str | |
def extract_speech_ids(speech_tokens_str): | |
speech_ids = [] | |
for token_str in speech_tokens_str: | |
if token_str.startswith('<|s_') and token_str.endswith('|>'): | |
num_str = token_str[4:-2] | |
num = int(num_str) | |
speech_ids.append(num) | |
else: | |
print(f"Unexpected token: {token_str}") | |
return speech_ids | |
def infer(sample_audio_path, target_text, progress=gr.Progress()): | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
progress(0, 'Loading and trimming audio...') | |
waveform, sample_rate = torchaudio.load(sample_audio_path) | |
if len(waveform[0])/sample_rate > 15: | |
gr.Warning("Trimming audio to first 15secs.") | |
waveform = waveform[:, :sample_rate*15] | |
# Check if the audio is stereo (i.e., has more than one channel) | |
if waveform.size(0) > 1: | |
# Convert stereo to mono by averaging the channels | |
waveform_mono = torch.mean(waveform, dim=0, keepdim=True) | |
else: | |
# If already mono, just use the original waveform | |
waveform_mono = waveform | |
prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono) | |
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip() | |
progress(0.5, 'Transcribed! Generating speech...') | |
input_text = prompt_text + ' ' + target_text | |
#TTS start! | |
with torch.no_grad(): | |
# Encode the prompt wav | |
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav) | |
vq_code_prompt = vq_code_prompt[0,0,:] | |
# Convert int 12345 to token <|s_12345|> | |
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt) | |
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>" | |
# Tokenize the text and the speech prefix | |
chat = [ | |
{"role": "user", "content": "Convert the text to speech:" + formatted_text}, | |
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)} | |
] | |
input_ids = tokenizer.apply_chat_template( | |
chat, | |
tokenize=True, | |
return_tensors='pt', | |
continue_final_message=True | |
) | |
input_ids = input_ids.to('cuda') | |
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>') | |
# Generate the speech autoregressively | |
outputs = model.generate( | |
input_ids, | |
max_length=2500, # We trained our model with a max length of 2048 | |
eos_token_id= speech_end_id , | |
do_sample=True, | |
top_p=1, | |
temperature=0.8 | |
) | |
# Extract the speech tokens | |
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1] | |
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
# Convert token <|s_23456|> to int 23456 | |
speech_tokens = extract_speech_ids(speech_tokens) | |
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0) | |
# Decode the speech tokens to speech waveform | |
gen_wav = Codec_model.decode_code(speech_tokens) | |
# if only need the generated part | |
gen_wav = gen_wav[:,:,prompt_wav.shape[1]:] | |
progress(1, 'Synthesized!') | |
return (16000, gen_wav[0, 0, :].cpu().numpy()) | |
with gr.Blocks() as app_tts: | |
gr.Markdown("# Zero Shot Voice Clone TTS") | |
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath") | |
gen_text_input = gr.Textbox(label="Text to Generate", lines=10) | |
generate_btn = gr.Button("Synthesize", variant="primary") | |
audio_output = gr.Audio(label="Synthesized Audio") | |
generate_btn.click( | |
infer, | |
inputs=[ | |
ref_audio_input, | |
gen_text_input, | |
], | |
outputs=[audio_output], | |
) | |
with gr.Blocks() as app_credits: | |
gr.Markdown(""" | |
# Credits | |
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training) | |
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS) | |
""") | |
with gr.Blocks() as app: | |
gr.Markdown( | |
""" | |
# llasa 3b TTS | |
This is a local web UI for llasa 3b SOTA(imo) Zero Shot Voice Cloning and TTS model. | |
The checkpoints support English and Chinese. | |
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt. | |
""" | |
) | |
gr.TabbedInterface([app_tts], ["TTS"]) | |
app.launch() |