LP-Music-Caps-demo / utils /audio_utils.py
seungheondoh
add model
e48ca55
STR_CLIP_ID = 'clip_id'
STR_AUDIO_SIGNAL = 'audio_signal'
STR_TARGET_VECTOR = 'target_vector'
STR_CH_FIRST = 'channels_first'
STR_CH_LAST = 'channels_last'
import io
import os
import tqdm
import logging
import subprocess
from typing import Tuple
from pathlib import Path
# import librosa
import numpy as np
import soundfile as sf
import itertools
from numpy.fft import irfft
def _resample_load_ffmpeg(path: str, sample_rate: int, downmix_to_mono: bool) -> Tuple[np.ndarray, int]:
"""
Decoding, downmixing, and downsampling by librosa.
Returns a channel-first audio signal.
Args:
path:
sample_rate:
downmix_to_mono:
Returns:
(audio signal, sample rate)
"""
def _decode_resample_by_ffmpeg(filename, sr):
"""decode, downmix, and resample audio file"""
channel_cmd = '-ac 1 ' if downmix_to_mono else '' # downmixing option
resampling_cmd = f'-ar {str(sr)}' if sr else '' # downsampling option
cmd = f"ffmpeg -i \"{filename}\" {channel_cmd} {resampling_cmd} -f wav -"
p = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate()
return out
src, sr = sf.read(io.BytesIO(_decode_resample_by_ffmpeg(path, sr=sample_rate)))
return src.T, sr
def _resample_load_librosa(path: str, sample_rate: int, downmix_to_mono: bool, **kwargs) -> Tuple[np.ndarray, int]:
"""
Decoding, downmixing, and downsampling by librosa.
Returns a channel-first audio signal.
"""
src, sr = librosa.load(path, sr=sample_rate, mono=downmix_to_mono, **kwargs)
return src, sr
def load_audio(
path: str or Path,
ch_format: str,
sample_rate: int = None,
downmix_to_mono: bool = False,
resample_by: str = 'ffmpeg',
**kwargs,
) -> Tuple[np.ndarray, int]:
"""A wrapper of librosa.load that:
- forces the returned audio to be 2-dim,
- defaults to sr=None, and
- defaults to downmix_to_mono=False.
The audio decoding is done by `audioread` or `soundfile` package and ultimately, often by ffmpeg.
The resampling is done by `librosa`'s child package `resampy`.
Args:
path: audio file path
ch_format: one of 'channels_first' or 'channels_last'
sample_rate: target sampling rate. if None, use the rate of the audio file
downmix_to_mono:
resample_by (str): 'librosa' or 'ffmpeg'. it decides backend for audio decoding and resampling.
**kwargs: keyword args for librosa.load - offset, duration, dtype, res_type.
Returns:
(audio, sr) tuple
"""
if ch_format not in (STR_CH_FIRST, STR_CH_LAST):
raise ValueError(f'ch_format is wrong here -> {ch_format}')
if os.stat(path).st_size > 8000:
if resample_by == 'librosa':
src, sr = _resample_load_librosa(path, sample_rate, downmix_to_mono, **kwargs)
elif resample_by == 'ffmpeg':
src, sr = _resample_load_ffmpeg(path, sample_rate, downmix_to_mono)
else:
raise NotImplementedError(f'resample_by: "{resample_by}" is not supposred yet')
else:
raise ValueError('Given audio is too short!')
return src, sr
# if src.ndim == 1:
# src = np.expand_dims(src, axis=0)
# # now always 2d and channels_first
# if ch_format == STR_CH_FIRST:
# return src, sr
# else:
# return src.T, sr
def ms(x):
"""Mean value of signal `x` squared.
:param x: Dynamic quantity.
:returns: Mean squared of `x`.
"""
return (np.abs(x)**2.0).mean()
def normalize(y, x=None):
"""normalize power in y to a (standard normal) white noise signal.
Optionally normalize to power in signal `x`.
#The mean power of a Gaussian with :math:`\\mu=0` and :math:`\\sigma=1` is 1.
"""
if x is not None:
x = ms(x)
else:
x = 1.0
return y * np.sqrt(x / ms(y))
def noise(N, color='white', state=None):
"""Noise generator.
:param N: Amount of samples.
:param color: Color of noise.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
"""
try:
return _noise_generators[color](N, state)
except KeyError:
raise ValueError("Incorrect color.")
def white(N, state=None):
"""
White noise.
:param N: Amount of samples.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
White noise has a constant power density. It's narrowband spectrum is therefore flat.
The power in white noise will increase by a factor of two for each octave band,
and therefore increases with 3 dB per octave.
"""
state = np.random.RandomState() if state is None else state
return state.randn(N)
def pink(N, state=None):
"""
Pink noise.
:param N: Amount of samples.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
Pink noise has equal power in bands that are proportionally wide.
Power density decreases with 3 dB per octave.
"""
state = np.random.RandomState() if state is None else state
uneven = N % 2
X = state.randn(N // 2 + 1 + uneven) + 1j * state.randn(N // 2 + 1 + uneven)
S = np.sqrt(np.arange(len(X)) + 1.) # +1 to avoid divide by zero
y = (irfft(X / S)).real
if uneven:
y = y[:-1]
return normalize(y)
def blue(N, state=None):
"""
Blue noise.
:param N: Amount of samples.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
Power increases with 6 dB per octave.
Power density increases with 3 dB per octave.
"""
state = np.random.RandomState() if state is None else state
uneven = N % 2
X = state.randn(N // 2 + 1 + uneven) + 1j * state.randn(N // 2 + 1 + uneven)
S = np.sqrt(np.arange(len(X))) # Filter
y = (irfft(X * S)).real
if uneven:
y = y[:-1]
return normalize(y)
def brown(N, state=None):
"""
Violet noise.
:param N: Amount of samples.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
Power decreases with -3 dB per octave.
Power density decreases with 6 dB per octave.
"""
state = np.random.RandomState() if state is None else state
uneven = N % 2
X = state.randn(N // 2 + 1 + uneven) + 1j * state.randn(N // 2 + 1 + uneven)
S = (np.arange(len(X)) + 1) # Filter
y = (irfft(X / S)).real
if uneven:
y = y[:-1]
return normalize(y)
def violet(N, state=None):
"""
Violet noise. Power increases with 6 dB per octave.
:param N: Amount of samples.
:param state: State of PRNG.
:type state: :class:`np.random.RandomState`
Power increases with +9 dB per octave.
Power density increases with +6 dB per octave.
"""
state = np.random.RandomState() if state is None else state
uneven = N % 2
X = state.randn(N // 2 + 1 + uneven) + 1j * state.randn(N // 2 + 1 + uneven)
S = (np.arange(len(X))) # Filter
y = (irfft(X * S)).real
if uneven:
y = y[:-1]
return normalize(y)
_noise_generators = {
'white': white,
'pink': pink,
'blue': blue,
'brown': brown,
'violet': violet,
}
def noise_generator(N=44100, color='white', state=None):
"""Noise generator.
:param N: Amount of unique samples to generate.
:param color: Color of noise.
Generate `N` amount of unique samples and cycle over these samples.
"""
#yield from itertools.cycle(noise(N, color)) # Python 3.3
for sample in itertools.cycle(noise(N, color, state)):
yield sample
def heaviside(N):
"""Heaviside.
Returns the value 0 for `x < 0`, 1 for `x > 0`, and 1/2 for `x = 0`.
"""
return 0.5 * (np.sign(N) + 1)