File size: 5,543 Bytes
71c9afb db275a2 71c9afb 226cc7a db275a2 71c9afb 226cc7a 71c9afb db275a2 226cc7a 71c9afb 226cc7a db275a2 71c9afb db275a2 226cc7a db275a2 226cc7a db275a2 226cc7a db275a2 226cc7a db275a2 226cc7a db275a2 71c9afb db275a2 71c9afb db275a2 71c9afb db275a2 71c9afb 226cc7a db275a2 226cc7a db275a2 226cc7a db275a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import time
import torch
import onnx
import cv2
import onnxruntime
import numpy as np
from tqdm import tqdm
import torch.nn as nn
from onnx import numpy_helper
from skimage import transform as trans
import torchvision.transforms.functional as F
import torch.nn.functional as F
from utils import mask_crop, laplacian_blending
arcface_dst = np.array(
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
[41.5493, 92.3655], [70.7299, 92.2041]],
dtype=np.float32)
def estimate_norm(lmk, image_size=112, mode='arcface'):
assert lmk.shape == (5, 2)
assert image_size % 112 == 0 or image_size % 128 == 0
if image_size % 112 == 0:
ratio = float(image_size) / 112.0
diff_x = 0
else:
ratio = float(image_size) / 128.0
diff_x = 8.0 * ratio
dst = arcface_dst * ratio
dst[:, 0] += diff_x
tform = trans.SimilarityTransform()
tform.estimate(lmk, dst)
M = tform.params[0:2, :]
return M
def norm_crop2(img, landmark, image_size=112, mode='arcface'):
M = estimate_norm(landmark, image_size, mode)
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
return warped, M
class Inswapper():
def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']):
self.model_file = model_file
self.batch_size = batch_size
model = onnx.load(self.model_file)
graph = model.graph
self.emap = numpy_helper.to_array(graph.initializer[-1])
self.session_options = onnxruntime.SessionOptions()
self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers)
def forward(self, imgs, latents):
preds = []
for img, latent in zip(imgs, latents):
img = img / 255
pred = self.session.run(['output'], {'target': img, 'source': latent})[0]
preds.append(pred)
def get(self, imgs, target_faces, source_faces):
imgs = list(imgs)
preds = [None] * len(imgs)
matrs = [None] * len(imgs)
for idx, (img, target_face, source_face) in enumerate(zip(imgs, target_faces, source_faces)):
matrix, blob, latent = self.prepare_data(img, target_face, source_face)
pred = self.session.run(['output'], {'target': blob, 'source': latent})[0]
pred = pred.transpose((0, 2, 3, 1))[0]
pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1]
preds[idx] = pred
matrs[idx] = matrix
return (preds, matrs)
def prepare_data(self, img, target_face, source_face):
if isinstance(img, str):
img = cv2.imread(img)
aligned_img, matrix = norm_crop2(img, target_face.kps, 128)
blob = cv2.dnn.blobFromImage(aligned_img, 1.0 / 255, (128, 128), (0., 0., 0.), swapRB=True)
latent = source_face.normed_embedding.reshape((1, -1))
latent = np.dot(latent, self.emap)
latent /= np.linalg.norm(latent)
return (matrix, blob, latent)
def batch_forward(self, img_list, target_f_list, source_f_list):
num_samples = len(img_list)
num_batches = (num_samples + self.batch_size - 1) // self.batch_size
for i in tqdm(range(num_batches), desc="Generating face"):
start_idx = i * self.batch_size
end_idx = min((i + 1) * self.batch_size, num_samples)
batch_img = img_list[start_idx:end_idx]
batch_target_f = target_f_list[start_idx:end_idx]
batch_source_f = source_f_list[start_idx:end_idx]
batch_pred, batch_matr = self.get(batch_img, batch_target_f, batch_source_f)
yield batch_pred, batch_matr
def paste_to_whole(foreground, background, matrix, mask=None, crop_mask=(0,0,0,0), blur_amount=0.1, erode_amount = 0.15, blend_method='linear'):
inv_matrix = cv2.invertAffineTransform(matrix)
fg_shape = foreground.shape[:2]
bg_shape = (background.shape[1], background.shape[0])
foreground = cv2.warpAffine(foreground, inv_matrix, bg_shape, borderValue=0.0)
if mask is None:
mask = np.full(fg_shape, 1., dtype=np.float32)
mask = mask_crop(mask, crop_mask)
mask = cv2.warpAffine(mask, inv_matrix, bg_shape, borderValue=0.0)
else:
assert fg_shape == mask.shape[:2], "foreground & mask shape mismatch!"
mask = mask_crop(mask, crop_mask).astype('float32')
mask = cv2.warpAffine(mask, inv_matrix, (background.shape[1], background.shape[0]), borderValue=0.0)
_mask = mask.copy()
_mask[_mask > 0.05] = 1.
non_zero_points = cv2.findNonZero(_mask)
_, _, w, h = cv2.boundingRect(non_zero_points)
mask_size = int(np.sqrt(w * h))
if erode_amount > 0:
kernel_size = max(int(mask_size * erode_amount), 1)
structuring_element = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size))
mask = cv2.erode(mask, structuring_element)
if blur_amount > 0:
kernel_size = max(int(mask_size * blur_amount), 3)
if kernel_size % 2 == 0:
kernel_size += 1
mask = cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0)
mask = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3))
if blend_method == 'laplacian':
composite_image = laplacian_blending(foreground, background, mask.clip(0,1), num_levels=4)
else:
composite_image = mask * foreground + (1 - mask) * background
return composite_image.astype("uint8").clip(0, 255)
|