import torch from transformers import pipeline, AutoTokenizer import gradio as gr # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") tokenizer.clean_up_tokenization_spaces = False # Explicitly set the parameter if needed # Load CLIP model for zero-shot classification clip_checkpoint = "openai/clip-vit-base-patch16" clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification") # Postprocess the output from CLIP def postprocess(output): return {out["label"]: float(out["score"]) for out in output} # Inference function for CLIP def infer(image, candidate_labels): candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")] clip_out = clip_detector(image, candidate_labels=candidate_labels) return postprocess(clip_out) # Gradio interface with gr.Blocks() as app: gr.Markdown("# Custom Classification") with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil") text_input = gr.Textbox(label="Input a list of labels") run_button = gr.Button("Run") with gr.Column(): clip_output = gr.Label(label="Output", num_top_classes=3) examples = [["image_8.webp", "girl, boy, lgbtq"]] gr.Examples( examples=examples, inputs=[image_input, text_input], outputs=[clip_output], fn=infer, cache_examples=True ) run_button.click(fn=infer, inputs=[image_input, text_input], outputs=[clip_output]) app.launch()