File size: 9,304 Bytes
b443c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import re
from PIL import Image
import torch
import torch.nn as nn
from transformers import AutoModel, CLIPImageProcessor
from PIL import Image
import requests
import torch.nn.functional as F
from transformers import AutoProcessor, Pix2StructVisionModel, Pix2StructProcessor, Pix2StructForConditionalGeneration

cfg={
    "crop_size": 256,
    "do_center_crop": True,
    "do_normalize": True,
    "do_resize": True,
    "feature_extractor_type": "CLIPFeatureExtractor",
    "image_mean": [
        0.48145466,
        0.4578275,
        0.40821073
    ],
    "image_std": [
        0.26862954,
        0.26130258,
        0.27577711
    ],
    "resample": 3,
    "size": 256
}

'''

Pixel2Struct-Large Model (pretrained version)

'''
class Pix2StructLargeVisionTower(nn.Module):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False
        self.vision_tower_name = vision_tower
        self.do_resize = args.do_resize
        self.de_normalize = args.de_normalize # de-normalize the input image and perform preprocessing with pix2struct processor
        self.select_layer = args.mm_vision_select_layer # NOTE: not implemented yet, this parameter has no effect
        self.input_image_size = args.input_image_size
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
        self.freeze_vision = args.freeze_vision

        self.args = args
        if not self.is_loaded:
            self.load_model()

    def load_model(self):
        if self.is_loaded:
            return
        whole_model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-large")
        self.vision_tower = whole_model.encoder
        self.pix2struct_processor = AutoProcessor.from_pretrained("google/pix2struct-large")
        self.pix2struct_processor.image_processor.is_vqa = False

        self.image_processor = CLIPImageProcessor(**cfg)
        if self.input_image_size is not None:
            self.image_processor.size=self.input_image_size
            self.image_processor.crop_size={
                'height':self.input_image_size,
                'width': self.input_image_size
            }

        if self.freeze_vision:
            self.vision_tower.requires_grad_(False)
        
        self.image_mean = torch.tensor(self.image_processor.image_mean).view(1, 3, 1, 1)
        self.image_std = torch.tensor(self.image_processor.image_std).view(1, 3, 1, 1)
        
        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer] # [bs, n, c], cls at idx=0
        if self.select_feature == 'patch':
            image_features = image_features[:, 1:]
        elif self.select_feature == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(f'Unexpected select feature: {self.select_feature}')
        return image_features

    # @torch.no_grad()
    def forward(self, images):

        if self.de_normalize:
            mean = self.image_mean.clone().view(1, 3, 1, 1).to(dtype=images.dtype, device=images.device)
            std = self.image_std.clone().view(1, 3, 1, 1).to(dtype=images.dtype, device=images.device)
            x = (images * std + mean) * 255.0
            x = self.pix2struct_processor(images=x.float(), return_tensors="pt")

        image_features = self.vision_tower(**(x.to(device=self.device, dtype=self.dtype))).last_hidden_state
        bs, n, c = image_features.shape
        image_features  = image_features[:, :2025, :] # HARD CODE
        
        if self.do_resize:
            image_features = image_features.transpose(1,2).reshape(bs, c, 45, 45) # HARD CODE
            image_features = F.interpolate(image_features.float(), size=(32, 32), mode='bilinear', align_corners=True).to(dtype=image_features.dtype) # HARD CODE
            return image_features
        else:
            return image_features


    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return next(self.vision_tower.parameters()).dtype

    @property
    def device(self):
        return next(self.vision_tower.parameters()).device

    @property
    def config(self):
        return self.vision_tower.config

    @property
    def hidden_size(self):
        #return self.config.hidden_size
        hidden_dim = 1536
        return hidden_dim

    @property
    def num_patches(self):
        # return (self.config.image_size // self.config.patch_size) ** 2
        return self.config['num_patches']


#main
if __name__ == "__main__":
    
    '''

    print('hello')

    from PIL import Image

    import requests

    from transformers import AutoProcessor, Pix2StructVisionModel



    model = Pix2StructVisionModel.from_pretrained("google/pix2struct-textcaps-base")

    processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")

    url = "http://images.cocodataset.org/val2017/000000039769.jpg"

    image = Image.open("/lustre/fsw/portfolios/llmservice/users/fuxiaol/me.jpg")



    for name, param in model.named_parameters():

        param.requires_grad = False





    #inputs = processor(images=image, return_tensors="pt")



    image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-448px-V1-5')

    pixel_values = image_processor(images=image, return_tensors='pt').pixel_values

    pixel_values = torch.cat([pixel_values, pixel_values], dim=0)

    #inputs = pixel_values.to(torch.bfloat16)



    print('pixel_values:', pixel_values.size())



    inputs = processor(images=pixel_values, max_patches=1024, return_tensors='pt')['flattened_patches']

    print(inputs.size())

    print(inputs.size())



    outputs = model(inputs)



    print(outputs.last_hidden_state.size())

    '''

    cfg={
    "crop_size": 1024,
    "do_center_crop": True,
    "do_normalize": True,
    "do_resize": True,
    "feature_extractor_type": "CLIPFeatureExtractor",
    "image_mean": [
        0.48145466,
        0.4578275,
        0.40821073
    ],
    "image_std": [
        0.26862954,
        0.26130258,
        0.27577711
    ],
    "resample": 3,
    "size": 1024
}
    
    from PIL import Image
    import requests
    from transformers import AutoProcessor, Pix2StructForConditionalGeneration
    from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
    import torchvision.transforms as T

    processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-large")
    model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-large")

    #url = "https://www.ilankelman.org/stopsigns/australia.jpg"
    #image = Image.open(requests.get(url, stream=True).raw)
    image = Image.open("/lustre/fsw/portfolios/llmservice/users/fuxiaol/sample2.jpg")

    image_processor= CLIPImageProcessor(**cfg)
    pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
    print(pixel_values.size())
    
    
    mean = [0.48145466, 0.4578275, 0.40821073]
    std = [0.26862954, 0.26130258, 0.27577711]
    mean = torch.tensor(mean).view(1, 3, 1, 1)
    std = torch.tensor(std).view(1, 3, 1, 1)
    pixel_values = pixel_values * std + mean
    print(pixel_values.size())


    #pixel_values.save('pix2image.jpg')
    transform = T.ToPILImage()
    img = transform(pixel_values.squeeze(0))
    img.save('pix2image.jpg')
    



    inputs = processor(images=pixel_values, max_patches=1024,return_tensors="pt")['flattened_patches']

    # autoregressive generation
    generated_ids = model.generate(inputs, max_new_tokens=50)
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    print(generated_text)
    #A stop sign is on a street corner.
    #A stop sign is on a street corner.

    

    '''

    from PIL import Image

    import requests

    from transformers import AutoProcessor, CLIPModel



    from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig







    processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14-336")

    model = CLIPVisionModel.from_pretrained('openai/clip-vit-large-patch14-336')



    url = "http://images.cocodataset.org/val2017/000000039769.jpg"

    image = Image.open(requests.get(url, stream=True).raw)

    print(image)



    inputs = processor(images=image, return_tensors="pt")



    #image_features = model.get_image_features(**inputs)

    outputs = model(**inputs,output_hidden_states=True)

    print(outputs.hidden_states[-1].size())

    print(outputs.hidden_states[-2].size())

    print(outputs.hidden_states[-3].size())

    '''
    
        



    #sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0]
    #sequence = processor.post_process_generation(sequence, fix_markdown=False)
    # note: we're using repr here such for the sake of printing the \n characters, feel free to just print the sequence
    #print(repr(sequence))