Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import re | |
# from llava.model.multimodal_projector.deformable_resampler import DeformableResampler | |
class IdentityMap(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x, *args, **kwargs): | |
return x | |
def config(self): | |
return {"mm_projector_type": 'identity'} | |
class SimpleResBlock(nn.Module): | |
def __init__(self, channels): | |
super().__init__() | |
self.pre_norm = nn.LayerNorm(channels) | |
self.proj = nn.Sequential( | |
nn.Linear(channels, channels), | |
nn.GELU(), | |
nn.Linear(channels, channels) | |
) | |
def forward(self, x): | |
x = self.pre_norm(x) | |
return x + self.proj(x) | |
def build_vision_projector(config, delay_load=False, fpn_input_dim=[], **kwargs): | |
projector_type = getattr(config, 'mm_projector_type', 'linear') | |
if projector_type == 'linear': | |
return nn.Linear(config.mm_hidden_size, config.hidden_size) | |
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) | |
if mlp_gelu_match: | |
mlp_depth = int(mlp_gelu_match.group(1)) | |
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] | |
for _ in range(1, mlp_depth): | |
modules.append(nn.GELU()) | |
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) | |
return nn.Sequential(*modules) | |
# resampler_match = re.match(r'^deformable-resampler-l(\d+)d(\d+)p(\d+)', projector_type) | |
# if resampler_match: | |
# use_fpn = "fpn" in projector_type or len(fpn_input_dim) > 0 | |
# layer_num = int(resampler_match.group(1)) | |
# embed_dim = int(resampler_match.group(2)) | |
# sample_point = int(resampler_match.group(3)) | |
# if len(fpn_input_dim) > 0: | |
# fpn_type = 'multi-level' | |
# else: | |
# fpn_type = 'simple' | |
# return DeformableResampler(input_dimension=config.mm_hidden_size, | |
# output_dimension=config.hidden_size, | |
# query_number=config.mm_projector_query_number, | |
# num_layers=layer_num, | |
# num_heads=8, | |
# feedforward_dims=2048, | |
# embed_dims=embed_dim, | |
# num_points=sample_point, | |
# direct_projection=True, | |
# use_fpn=use_fpn, | |
# fpn_config=dict( | |
# fpn_type=fpn_type, | |
# in_channels=fpn_input_dim)) | |
if projector_type == 'identity': | |
return IdentityMap() | |
raise ValueError(f'Unknown projector type: {projector_type}') | |