Spaces:
Runtime error
Runtime error
shenglongw
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,169 +1,47 @@
|
|
1 |
-
import
|
2 |
-
import os
|
3 |
|
4 |
-
|
5 |
-
import tempfile
|
6 |
-
from pathlib import Path
|
7 |
-
import secrets
|
8 |
-
import dashscope
|
9 |
-
from dashscope import MultiModalConversation, Generation
|
10 |
-
from PIL import Image
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
YOUR_API_TOKEN = os.getenv('YOUR_API_TOKEN')
|
15 |
-
dashscope.api_key = YOUR_API_TOKEN
|
16 |
-
math_messages = []
|
17 |
-
def process_image(image, shouldConvert=False):
|
18 |
-
# 获取上传文件的目录
|
19 |
-
global math_messages
|
20 |
-
math_messages = [] # reset when upload image
|
21 |
-
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
|
22 |
-
Path(tempfile.gettempdir()) / "gradio"
|
23 |
-
)
|
24 |
-
os.makedirs(uploaded_file_dir, exist_ok=True)
|
25 |
-
|
26 |
-
# 创建临时文件路径
|
27 |
-
name = f"tmp{secrets.token_hex(20)}.jpg"
|
28 |
-
filename = os.path.join(uploaded_file_dir, name)
|
29 |
-
# 保存上传的图片
|
30 |
-
if shouldConvert:
|
31 |
-
new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
|
32 |
-
new_img.paste(image, (0, 0), mask=image)
|
33 |
-
image = new_img
|
34 |
-
image.save(filename)
|
35 |
-
|
36 |
-
# 调用qwen-vl-max-0809模型处理图片
|
37 |
-
messages = [{
|
38 |
-
'role': 'system',
|
39 |
-
'content': [{'text': 'You are a helpful assistant.'}]
|
40 |
-
}, {
|
41 |
-
'role': 'user',
|
42 |
-
'content': [
|
43 |
-
{'image': f'file://{filename}'},
|
44 |
-
{'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'}
|
45 |
-
]
|
46 |
-
}]
|
47 |
-
|
48 |
-
response = MultiModalConversation.call(model='qwen-vl-max-0809', messages=messages)
|
49 |
-
|
50 |
-
# 清理临时文件
|
51 |
-
os.remove(filename)
|
52 |
-
|
53 |
-
return response.output.choices[0]["message"]["content"]
|
54 |
|
55 |
-
|
56 |
-
global math_messages
|
57 |
-
if not math_messages:
|
58 |
-
math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'})
|
59 |
-
math_messages = math_messages[:1]
|
60 |
-
if image_description is not None:
|
61 |
-
content = f'Image description: {image_description}\n\n'
|
62 |
-
else:
|
63 |
-
content = ''
|
64 |
-
query = f"{content}User question: {user_question}"
|
65 |
-
math_messages.append({'role': 'user', 'content': query})
|
66 |
-
response = Generation.call(
|
67 |
-
model="qwen2-math-72b-instruct",
|
68 |
-
messages=math_messages,
|
69 |
-
result_format='message',
|
70 |
-
stream=True
|
71 |
-
)
|
72 |
-
answer = None
|
73 |
-
for resp in response:
|
74 |
-
if resp.output is None:
|
75 |
-
continue
|
76 |
-
answer = resp.output.choices[0].message.content
|
77 |
-
yield answer.replace("\\", "\\\\")
|
78 |
-
print(f'query: {query}\nanswer: {answer}')
|
79 |
-
if answer is None:
|
80 |
-
math_messages.pop()
|
81 |
-
else:
|
82 |
-
math_messages.append({'role': 'assistant', 'content': answer})
|
83 |
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
image_description = None
|
88 |
-
# Upload
|
89 |
-
if current_tab_index == 0:
|
90 |
-
if image is not None:
|
91 |
-
image_description = process_image(image)
|
92 |
-
# Sketch
|
93 |
-
elif current_tab_index == 1:
|
94 |
-
print(sketchpad)
|
95 |
-
if sketchpad and sketchpad["composite"]:
|
96 |
-
image_description = process_image(sketchpad["composite"], True)
|
97 |
-
yield from get_math_response(image_description, question)
|
98 |
|
99 |
-
|
100 |
-
#qwen-md .katex-display { display: inline; }
|
101 |
-
#qwen-md .katex-display>.katex { display: inline; }
|
102 |
-
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
|
103 |
-
"""
|
104 |
|
105 |
-
def tabs_select(e: gr.SelectData, _state):
|
106 |
-
_state["tab_index"] = e.index
|
107 |
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
with gr.Row():
|
128 |
-
with gr.Column():
|
129 |
-
clear_btn = gr.ClearButton(
|
130 |
-
[*input_image, input_sketchpad, input_text])
|
131 |
-
with gr.Column():
|
132 |
-
submit_btn = gr.Button("Submit", variant="primary")
|
133 |
-
with gr.Column():
|
134 |
-
output_md = gr.Markdown(label="answer",
|
135 |
-
latex_delimiters=[{
|
136 |
-
"left": "\\(",
|
137 |
-
"right": "\\)",
|
138 |
-
"display": True
|
139 |
-
}, {
|
140 |
-
"left": "\\begin\{equation\}",
|
141 |
-
"right": "\\end\{equation\}",
|
142 |
-
"display": True
|
143 |
-
}, {
|
144 |
-
"left": "\\begin\{align\}",
|
145 |
-
"right": "\\end\{align\}",
|
146 |
-
"display": True
|
147 |
-
}, {
|
148 |
-
"left": "\\begin\{alignat\}",
|
149 |
-
"right": "\\end\{alignat\}",
|
150 |
-
"display": True
|
151 |
-
}, {
|
152 |
-
"left": "\\begin\{gather\}",
|
153 |
-
"right": "\\end\{gather\}",
|
154 |
-
"display": True
|
155 |
-
}, {
|
156 |
-
"left": "\\begin\{CD\}",
|
157 |
-
"right": "\\end\{CD\}",
|
158 |
-
"display": True
|
159 |
-
}, {
|
160 |
-
"left": "\\[",
|
161 |
-
"right": "\\]",
|
162 |
-
"display": True
|
163 |
-
}],
|
164 |
-
elem_id="qwen-md")
|
165 |
-
submit_btn.click(
|
166 |
-
fn=math_chat_bot,
|
167 |
-
inputs=[*input_image, input_sketchpad, input_text, state],
|
168 |
-
outputs=output_md)
|
169 |
-
demo.launch()
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel
|
|
|
2 |
|
3 |
+
def get_dialogue_history(dialogue_history_list: list):
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
dialogue_history_tmp = []
|
6 |
+
for item in dialogue_history_list:
|
7 |
+
if item['role'] == 'counselor':
|
8 |
+
text = '咨询师:'+ item['content']
|
9 |
+
else:
|
10 |
+
text = '来访者:'+ item['content']
|
11 |
+
dialogue_history_tmp.append(text)
|
12 |
|
13 |
+
dialogue_history = '\n'.join(dialogue_history_tmp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
return dialogue_history + '\n' + '咨询师:'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
def get_instruction(dialogue_history):
|
18 |
+
instruction = f'''现在你扮演一位专业的心理咨询师,你具备丰富的心理学和心理健康知识。你擅长运用多种心理咨询技巧,例如认知行为疗法原则、动机访谈技巧和解决问题导向的短期疗法。以温暖亲切的语气,展现出共情和对来访者感受的深刻理解。以自然的方式与来访者进行对话,避免过长或过短的回应,确保回应流畅且类似人类的对话。提供深层次的指导和洞察,使用具体的心理概念和例子帮助来访者更深入地探索思想和感受。避免教导式的回应,更注重共情和尊重来访者的感受。根据来访者的反馈调整回应,确保回应贴合来访者的情境和需求。请为以下的对话生成一个回复。
|
19 |
|
20 |
+
对话:
|
21 |
+
{dialogue_history}'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
return instruction
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
25 |
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained('qiuhuachuan/MeChat', trust_remote_code=True)
|
27 |
+
model = AutoModel.from_pretrained('qiuhuachuan/MeChat', trust_remote_code=True).half().cuda()
|
28 |
+
model = model.eval()
|
29 |
|
30 |
+
dialogue_history_list = []
|
31 |
+
while True:
|
32 |
+
usr_msg = input('来访者:')
|
33 |
+
if usr_msg == '0':
|
34 |
+
exit()
|
35 |
+
else:
|
36 |
+
dialogue_history_list.append({
|
37 |
+
'role': 'client',
|
38 |
+
'content': usr_msg
|
39 |
+
})
|
40 |
+
dialogue_history = get_dialogue_history(dialogue_history_list=dialogue_history_list)
|
41 |
+
instruction = get_instruction(dialogue_history=dialogue_history)
|
42 |
+
response, history = model.chat(tokenizer, instruction, history=[], temperature=0.8, top_p=0.8)
|
43 |
+
print(f'咨询师:{response}')
|
44 |
+
dialogue_history_list.append({
|
45 |
+
'role': 'counselor',
|
46 |
+
'content': response
|
47 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|