import panel as pn import hvplot.pandas # Load Data from bokeh.sampledata.autompg import autompg_clean as df # Make DataFrame Pipeline Interactive idf = df.interactive() # Define Panel widgets cylinders = pn.widgets.IntSlider(name='Cylinders', start=4, end=8, step=2) mfr = pn.widgets.ToggleGroup( name='MFR', options=['ford', 'chevrolet', 'honda', 'toyota', 'audi'], value=['ford', 'chevrolet', 'honda', 'toyota', 'audi'], button_type='success') yaxis = pn.widgets.RadioButtonGroup( name='Y axis', options=['hp', 'weight'], button_type='success' ) # Combine pipeline and widgets ipipeline = ( idf[ (idf.cyl == cylinders) & (idf.mfr.isin(mfr)) ] .groupby(['origin', 'mpg'])[yaxis].mean() .to_frame() .reset_index() .sort_values(by='mpg') .reset_index(drop=True) ) # Pipe to hvplot ihvplot = ipipeline.hvplot(x='mpg', y=yaxis, by='origin', color=[ "#ff6f69", "#ffcc5c", "#88d8b0"], line_width=6, height=400) # Layout using Template template = pn.template.FastListTemplate( title='Interactive DataFrame Dashboards with hvplot .interactive', sidebar=[cylinders, 'Manufacturers', mfr, 'Y axis', yaxis], main=[ihvplot.panel()], accent_base_color="#88d8b0", header_background="#88d8b0", ) template.servable()