File size: 11,656 Bytes
0469e08
 
 
 
 
ff98ab7
0469e08
 
 
 
 
 
aeda90f
3bd6fba
 
0469e08
 
d31c2af
0469e08
 
 
 
2c8e1ad
 
 
aeda90f
2c8e1ad
 
aeda90f
2c8e1ad
 
aeda90f
2c8e1ad
 
 
 
32056ff
3b0c073
3bd6fba
22ed136
 
 
32056ff
22ed136
3b0c073
b75ba06
0469e08
 
 
 
 
 
 
 
 
 
 
 
 
3bd6fba
0469e08
 
 
 
2bd9b5e
0469e08
 
 
3bd6fba
 
 
 
 
 
 
 
 
b7895e4
3bd6fba
 
b7895e4
3bd6fba
 
b7895e4
3bd6fba
 
5cbd5b0
5028d04
0469e08
3bd6fba
 
0469e08
 
 
 
 
 
 
 
 
 
 
b226556
22ed136
 
0469e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5028d04
0469e08
2bd9b5e
5028d04
2bd9b5e
b7895e4
2bd9b5e
 
5028d04
 
0469e08
 
5028d04
0469e08
 
3bd6fba
2bd9b5e
3bd6fba
5028d04
 
3bd6fba
782714c
 
3bd6fba
5028d04
 
2bd9b5e
5028d04
2bd9b5e
b7895e4
2bd9b5e
 
 
5028d04
 
 
 
 
 
 
 
 
 
 
 
782714c
0469e08
5028d04
0469e08
 
 
 
 
d31c2af
0469e08
3bd6fba
2bd9b5e
0469e08
 
 
 
86c315e
a898c1e
 
 
86c315e
 
 
 
 
 
 
 
 
 
 
0469e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
818194d
 
 
 
 
 
 
 
 
0469e08
818194d
8d3ba17
0469e08
 
 
 
9c00473
e6faf36
9c00473
e6faf36
 
0469e08
 
 
5028d04
 
 
0469e08
818194d
 
 
 
 
 
 
 
 
 
 
 
 
 
0469e08
 
818194d
2bd9b5e
0469e08
 
 
 
 
2bd9b5e
0469e08
 
 
5028d04
2bd9b5e
 
a894150
0469e08
 
a894150
0469e08
2bd9b5e
 
a894150
0469e08
 
 
 
3bd6fba
0469e08
 
 
 
 
f0783a6
 
818194d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import base64
import json
from datetime import datetime
import gradio as gr
import torch
import spaces
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import ast
import os
import numpy as np
from huggingface_hub import hf_hub_download, list_repo_files
import boto3
from botocore.exceptions import NoCredentialsError

# Define constants
DESCRIPTION = "[ShowUI Demo](https://huggingface.co/showlab/ShowUI-2B)"
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1344 * 28 * 28

# Specify the model repository and destination folder
model_repo = "showlab/ShowUI-2B"
destination_folder = "./showui-2b"

# Ensure the destination folder exists
os.makedirs(destination_folder, exist_ok=True)

# List all files in the repository
files = list_repo_files(repo_id=model_repo)

# Download each file to the destination folder
for file in files:
    file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder)
    print(f"Downloaded {file} to {file_path}")

model = Qwen2VLForConditionalGeneration.from_pretrained(
    destination_folder,
    torch_dtype=torch.bfloat16,
    device_map="cpu",
)

# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)

# Helper functions
def draw_point(image_input, point=None, radius=5):
    """Draw a point on the image."""
    if isinstance(image_input, str):
        image = Image.open(image_input)
    else:
        image = Image.fromarray(np.uint8(image_input))

    if point:
        x, y = point[0] * image.width, point[1] * image.height
        ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
    return image

def array_to_image_path(image_array, session_id):
    """Save the uploaded image and return its path."""
    if image_array is None:
        raise ValueError("No image provided. Please upload an image before submitting.")
    img = Image.fromarray(np.uint8(image_array))
    filename = f"{session_id}.png"
    img.save(filename)
    return os.path.abspath(filename)

def upload_to_s3(file_name, bucket, object_name=None):
    """Upload a file to an S3 bucket."""
    if object_name is None:
        object_name = file_name

    s3 = boto3.client('s3')

    try:
        s3.upload_file(file_name, bucket, object_name)
        # print(f"Uploaded {file_name} to {bucket}/{object_name}.")
        return True
    except FileNotFoundError:
        # print(f"The file {file_name} was not found.")
        return False
    except NoCredentialsError:
        # print("Credentials not available.")
        return False

@spaces.GPU
def run_showui(image, query, session_id):
    """Main function for inference."""
    image_path = array_to_image_path(image, session_id)
    
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": _SYSTEM},
                {"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
                {"type": "text", "text": query}
            ],
        }
    ]

    global model
    model = model.to("cuda")
    
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt"
    )
    inputs = inputs.to("cuda")

    generated_ids = model.generate(**inputs, max_new_tokens=128)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )[0]

    click_xy = ast.literal_eval(output_text)
    result_image = draw_point(image_path, click_xy, radius=10)
    return result_image, str(click_xy), image_path

def save_and_upload_data(image_path, query, session_id, is_example_image, votes=None):
    """Save the data to a JSON file and upload to S3."""
    if is_example_image:
        # print("Example image used. Skipping upload.")
        return

    votes = votes or {"upvotes": 0, "downvotes": 0}
    data = {
        "image_path": image_path,
        "query": query,
        "votes": votes,
        "timestamp": datetime.now().isoformat()
    }
    
    local_file_name = f"{session_id}.json"
    
    with open(local_file_name, "w") as f:
        json.dump(data, f)
    
    upload_to_s3(local_file_name, 'altair.storage', object_name=f"ootb/{local_file_name}")
    upload_to_s3(image_path, 'altair.storage', object_name=f"ootb/{os.path.basename(image_path)}")

    return data

def update_vote(vote_type, session_id, is_example_image):
    """Update the vote count and re-upload the JSON file."""
    if is_example_image:
        # print("Example image used. Skipping vote update.")
        return "Example image used. No vote recorded."

    local_file_name = f"{session_id}.json"
    
    with open(local_file_name, "r") as f:
        data = json.load(f)
    
    if vote_type == "upvote":
        data["votes"]["upvotes"] += 1
    elif vote_type == "downvote":
        data["votes"]["downvotes"] += 1
    
    with open(local_file_name, "w") as f:
        json.dump(data, f)
    
    upload_to_s3(local_file_name, 'altair.storage', object_name=f"ootb/{local_file_name}")

    return f"Your {vote_type} has been recorded. Thank you!"

with open("./assets/showui.png", "rb") as image_file:
    base64_image = base64.b64encode(image_file.read()).decode("utf-8")

def build_demo(embed_mode, concurrency_count=1):
    with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo:
        state_image_path = gr.State(value=None)
        state_session_id = gr.State(value=None)
        state_is_example_image = gr.State(value=False)

        if not embed_mode:
            gr.HTML(
                f"""
                <div style="text-align: center; margin-bottom: 20px;">
                    <div style="display: flex; justify-content: center;">
                        <img src="data:image/png;base64,{base64_image}" alt="ShowUI" width="320" style="margin-bottom: 10px;"/>
                    </div>
                    <p>ShowUI is a lightweight vision-language-action model for GUI agents.</p>
                    <div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;">
                        <a href="https://huggingface.co/showlab/ShowUI-2B" target="_blank">
                            <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/>
                        </a>
                        <a href="https://arxiv.org/abs/2411.17465" target="_blank">
                            <img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/>
                        </a>
                        <a href="https://github.com/showlab/ShowUI" target="_blank">
                            <img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/>
                        </a>
                    </div>
                </div>
                """
            )

        with gr.Row():
            with gr.Column(scale=3):
                imagebox = gr.Image(type="numpy", label="Input Screenshot")
                textbox = gr.Textbox(
                    show_label=True,
                    placeholder="Enter a query (e.g., 'Click Nahant')",
                    label="Query",
                )
                submit_btn = gr.Button(value="Submit", variant="primary")

                gr.Examples(
                    examples=[
                        ["./examples/app_store.png", "Download Kindle."],
                        ["./examples/ios_setting.png", "Turn off Do not disturb."],
                        ["./examples/apple_music.png", "Star to favorite."],
                        ["./examples/map.png", "Boston."],
                        ["./examples/wallet.png", "Scan a QR code."],
                        ["./examples/word.png", "More shapes."],
                        ["./examples/web_shopping.png", "Proceed to checkout."],
                        ["./examples/web_forum.png", "Post my comment."],
                        ["./examples/safari_google.png", "Click on search bar."],
                    ],
                    inputs=[imagebox, textbox],
                    examples_per_page=3
                )

            with gr.Column(scale=8):
                output_img = gr.Image(type="pil", label="Output Image")
                gr.HTML(
                    """
                    <p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p>
                    """
                )
                output_coords = gr.Textbox(label="Clickable Coordinates")

                with gr.Row(elem_id="action-buttons", equal_height=True):
                    upvote_btn = gr.Button(value="Looks good!", variant="secondary")
                    downvote_btn = gr.Button(value="Too bad!", variant="secondary")
                    clear_btn = gr.Button(value="🗑️ Clear", interactive=True)

            def on_submit(image, query):
                if image is None:
                    raise ValueError("No image provided. Please upload an image before submitting.")
                
                session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
                print("image_path:", image)
                is_example_image = isinstance(image, str) and image.startswith("./examples/")
                
                result_image, click_coords, image_path = run_showui(image, query, session_id)
                
                save_and_upload_data(image_path, query, session_id, is_example_image)
                
                return result_image, click_coords, image_path, session_id, is_example_image

            submit_btn.click(
                on_submit,
                [imagebox, textbox],
                [output_img, output_coords, state_image_path, state_session_id, state_is_example_image],
            )

            clear_btn.click(
                lambda: (None, None, None, None, None),
                inputs=None,
                outputs=[imagebox, textbox, output_img, output_coords, state_image_path, state_session_id, state_is_example_image],
                queue=False
            )

            upvote_btn.click(
                lambda session_id, is_example_image: update_vote("upvote", session_id, is_example_image),
                inputs=[state_session_id, state_is_example_image],
                outputs=[],
                queue=False
            )

            downvote_btn.click(
                lambda session_id, is_example_image: update_vote("downvote", session_id, is_example_image),
                inputs=[state_session_id, state_is_example_image],
                outputs=[],
                queue=False
            )

    return demo

if __name__ == "__main__":
    demo = build_demo(embed_mode=False)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        ssr_mode=False,
        debug=True,
    )