Spaces:
Runtime error
Runtime error
File size: 36,240 Bytes
0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 |
# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2
from torchvision.utils import save_image
from PIL import Image
from pytorch_lightning import seed_everything
import subprocess
from collections import OrderedDict
import re
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import os
import requests
from io import BytesIO
from annotator.util import resize_image, HWC3, resize_points, get_bounding_box, save_input_to_file
import torch
from safetensors.torch import load_file
from collections import defaultdict
from diffusers import StableDiffusionControlNetPipeline
from diffusers import ControlNetModel, UniPCMultistepScheduler
from utils.stable_diffusion_controlnet import ControlNetModel2
from utils.stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline, \
StableDiffusionControlNetInpaintMixingPipeline, prepare_mask_image
# need the latest transformers
# pip install git+https://github.com/huggingface/transformers.git
from transformers import AutoProcessor, Blip2ForConditionalGeneration
from diffusers import ControlNetModel
import PIL.Image
# Segment-Anything init.
# pip install git+https://github.com/facebookresearch/segment-anything.git
try:
from segment_anything import (
sam_model_registry,
SamAutomaticMaskGenerator,
SamPredictor,
)
except ImportError:
print("segment_anything not installed")
result = subprocess.run(
[
"pip",
"install",
"git+https://github.com/facebookresearch/segment-anything.git",
],
check=True,
)
print(f"Install segment_anything {result}")
from segment_anything import (
sam_model_registry,
SamAutomaticMaskGenerator,
SamPredictor,
)
if not os.path.exists("./models/sam_vit_h_4b8939.pth"):
result = subprocess.run(
[
"wget",
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
"-P",
"models",
],
check=True,
)
print(f"Download sam_vit_h_4b8939.pth {result}")
device = "cuda" if torch.cuda.is_available() else "cpu"
config_dict = OrderedDict(
[
("LAION Pretrained(v0-4)-SD15", "shgao/edit-anything-v0-4-sd15"),
("LAION Pretrained(v0-4)-SD21", "shgao/edit-anything-v0-4-sd21"),
("LAION Pretrained(v0-3)-SD21", "shgao/edit-anything-v0-3"),
("SAM Pretrained(v0-1)-SD21", "shgao/edit-anything-v0-1-1"),
]
)
def init_sam_model(sam_generator=None, mask_predictor=None):
if sam_generator is not None and mask_predictor is not None:
return sam_generator, mask_predictor
sam_checkpoint = "models/sam_vit_h_4b8939.pth"
model_type = "default"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
sam_generator = (
SamAutomaticMaskGenerator(
sam) if sam_generator is None else sam_generator
)
mask_predictor = SamPredictor(
sam) if mask_predictor is None else mask_predictor
return sam_generator, mask_predictor
def init_blip_processor():
blip_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
return blip_processor
def init_blip_model():
blip_model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto"
)
return blip_model
def get_pipeline_embeds(pipeline, prompt, negative_prompt, device):
# https://github.com/huggingface/diffusers/issues/2136
"""Get pipeline embeds for prompts bigger than the maxlength of the pipe
:param pipeline:
:param prompt:
:param negative_prompt:
:param device:
:return:
"""
max_length = pipeline.tokenizer.model_max_length
# # simple way to determine length of tokens
# count_prompt = len(re.split(r",", prompt))
# count_negative_prompt = len(re.split(r",", negative_prompt))
# # create the tensor based on which prompt is longer
# if count_prompt >= count_negative_prompt:
# input_ids = pipeline.tokenizer(
# prompt, return_tensors="pt", truncation=False
# ).input_ids.to(device)
# shape_max_length = input_ids.shape[-1]
# negative_ids = pipeline.tokenizer(
# negative_prompt,
# truncation=False,
# padding="max_length",
# max_length=shape_max_length,
# return_tensors="pt",
# ).input_ids.to(device)
# else:
# negative_ids = pipeline.tokenizer(
# negative_prompt, return_tensors="pt", truncation=False
# ).input_ids.to(device)
# shape_max_length = negative_ids.shape[-1]
# input_ids = pipeline.tokenizer(
# prompt,
# return_tensors="pt",
# truncation=False,
# padding="max_length",
# max_length=shape_max_length,
# ).input_ids.to(device)
# concat_embeds = []
# neg_embeds = []
# for i in range(0, shape_max_length, max_length):
# concat_embeds.append(pipeline.text_encoder(
# input_ids[:, i: i + max_length])[0])
# neg_embeds.append(pipeline.text_encoder(
# negative_ids[:, i: i + max_length])[0])
input_ids = pipeline.tokenizer(
prompt, return_tensors="pt", truncation=False
).input_ids.to(device)
negative_ids = pipeline.tokenizer(
negative_prompt, return_tensors="pt", truncation=False
).input_ids.to(device)
shape_max_length = max(input_ids.shape[-1],negative_ids.shape[-1])
if input_ids.shape[-1]>negative_ids.shape[-1]:
negative_ids = pipeline.tokenizer(
negative_prompt,
truncation=False,
padding="max_length",
max_length=shape_max_length,
return_tensors="pt",
).input_ids.to(device)
else:
input_ids = pipeline.tokenizer(
prompt,
return_tensors="pt",
truncation=False,
padding="max_length",
max_length=shape_max_length,
).input_ids.to(device)
concat_embeds = []
neg_embeds = []
for i in range(0, shape_max_length, max_length):
concat_embeds.append(pipeline.text_encoder(
input_ids[:, i: i + max_length])[0])
neg_embeds.append(pipeline.text_encoder(
negative_ids[:, i: i + max_length])[0])
return torch.cat(concat_embeds, dim=1), torch.cat(neg_embeds, dim=1)
def load_lora_weights(pipeline, checkpoint_path, multiplier, device, dtype):
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
# load LoRA weight from .safetensors
print('device: {}'.format(device))
if isinstance(checkpoint_path, str):
state_dict = load_file(checkpoint_path, device=device)
updates = defaultdict(dict)
for key, value in state_dict.items():
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
layer, elem = key.split(".", 1)
updates[layer][elem] = value
# directly update weight in diffusers model
for layer, elems in updates.items():
if "text" in layer:
layer_infos = layer.split(
LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
curr_layer = pipeline.text_encoder
else:
layer_infos = layer.split(
LORA_PREFIX_UNET + "_")[-1].split("_")
curr_layer = pipeline.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# get elements for this layer
weight_up = elems["lora_up.weight"].to(dtype)
weight_down = elems["lora_down.weight"].to(dtype)
alpha = elems["alpha"]
if alpha:
alpha = alpha.item() / weight_up.shape[1]
else:
alpha = 1.0
# update weight
if len(weight_up.shape) == 4:
curr_layer.weight.data += (
multiplier
* alpha
* torch.mm(
weight_up.squeeze(3).squeeze(2),
weight_down.squeeze(3).squeeze(2),
)
.unsqueeze(2)
.unsqueeze(3)
)
else:
curr_layer.weight.data += (
multiplier * alpha * torch.mm(weight_up, weight_down)
)
else:
for ckptpath in checkpoint_path:
state_dict = load_file(ckptpath, device=device)
updates = defaultdict(dict)
for key, value in state_dict.items():
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
layer, elem = key.split(".", 1)
updates[layer][elem] = value
# directly update weight in diffusers model
for layer, elems in updates.items():
if "text" in layer:
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split(
"_"
)
curr_layer = pipeline.text_encoder
else:
layer_infos = layer.split(
LORA_PREFIX_UNET + "_")[-1].split("_")
curr_layer = pipeline.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# get elements for this layer
weight_up = elems["lora_up.weight"].to(dtype)
weight_down = elems["lora_down.weight"].to(dtype)
alpha = elems["alpha"]
if alpha:
alpha = alpha.item() / weight_up.shape[1]
else:
alpha = 1.0
# update weight
if len(weight_up.shape) == 4:
curr_layer.weight.data += (
multiplier
* alpha
* torch.mm(
weight_up.squeeze(3).squeeze(2),
weight_down.squeeze(3).squeeze(2),
)
.unsqueeze(2)
.unsqueeze(3)
)
else:
curr_layer.weight.data += (
multiplier * alpha * torch.mm(weight_up, weight_down)
)
return pipeline
def make_inpaint_condition(image, image_mask):
image = image / 255.0
assert (
image.shape[0:1] == image_mask.shape[0:1]
), "image and image_mask must have the same image size"
image[image_mask > 128] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
def obtain_generation_model(
base_model_path,
lora_model_path,
controlnet_path,
generation_only=False,
extra_inpaint=True,
lora_weight=1.0,
):
controlnet = []
controlnet.append(
ControlNetModel2.from_pretrained(
controlnet_path, torch_dtype=torch.float16)
) # sam control
if (not generation_only) and extra_inpaint: # inpainting control
print("Warning: ControlNet based inpainting model only support SD1.5 for now.")
controlnet.append(
ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
) # inpainting controlnet
)
if generation_only and extra_inpaint:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
)
else:
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
)
if lora_model_path is not None:
pipe = load_lora_weights(
pipe, [lora_model_path], lora_weight, "cpu", torch.float32
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
return pipe
def obtain_tile_model(base_model_path, lora_model_path, lora_weight=1.0):
controlnet = ControlNetModel2.from_pretrained(
"lllyasviel/control_v11f1e_sd15_tile", torch_dtype=torch.float16
) # tile controlnet
if (
base_model_path == "runwayml/stable-diffusion-v1-5"
or base_model_path == "stabilityai/stable-diffusion-2-inpainting"
):
print("base_model_path", base_model_path)
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
)
else:
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
)
if lora_model_path is not None:
pipe = load_lora_weights(
pipe, [lora_model_path], lora_weight, "cpu", torch.float32
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
return pipe
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
full_img = None
# for ann in sorted_anns:
for i in range(len(sorted_anns)):
ann = anns[i]
m = ann["segmentation"]
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
map[m != 0] = i + 1
color_mask = np.random.random((1, 3)).tolist()[0]
full_img[m != 0] = color_mask
full_img = full_img * 255
# anno encoding from https://github.com/LUSSeg/ImageNet-S
res = np.zeros((map.shape[0], map.shape[1], 3))
res[:, :, 0] = map % 256
res[:, :, 1] = map // 256
res.astype(np.float32)
full_img = Image.fromarray(np.uint8(full_img))
return full_img, res
class EditAnythingLoraModel:
def __init__(
self,
base_model_path="../chilloutmix_NiPrunedFp32Fix",
lora_model_path="../40806/mix4",
use_blip=True,
blip_processor=None,
blip_model=None,
sam_generator=None,
controlmodel_name="LAION Pretrained(v0-4)-SD15",
# used when the base model is not an inpainting model.
extra_inpaint=True,
tile_model=None,
lora_weight=1.0,
alpha_mixing=None,
mask_predictor=None,
):
self.device = device
self.use_blip = use_blip
# Diffusion init using diffusers.
self.default_controlnet_path = config_dict[controlmodel_name]
self.base_model_path = base_model_path
self.lora_model_path = lora_model_path
self.defalut_enable_all_generate = False
self.extra_inpaint = extra_inpaint
self.last_ref_infer = False
self.pipe = obtain_generation_model(
base_model_path,
lora_model_path,
self.default_controlnet_path,
generation_only=False,
extra_inpaint=extra_inpaint,
lora_weight=lora_weight,
)
# self.pipe.load_textual_inversion("textual_inversion_cat/learned_embeds.bin")
# Segment-Anything init.
self.sam_generator, self.mask_predictor = init_sam_model(
sam_generator, mask_predictor
)
# BLIP2 init.
if use_blip:
if blip_processor is not None:
self.blip_processor = blip_processor
else:
self.blip_processor = init_blip_processor()
if blip_model is not None:
self.blip_model = blip_model
else:
self.blip_model = init_blip_model()
# tile model init.
if tile_model is not None:
self.tile_pipe = tile_model
else:
self.tile_pipe = obtain_tile_model(
base_model_path, lora_model_path, lora_weight=lora_weight
)
def get_blip2_text(self, image):
inputs = self.blip_processor(image, return_tensors="pt").to(
self.device, torch.float16
)
generated_ids = self.blip_model.generate(**inputs, max_new_tokens=50)
generated_text = self.blip_processor.batch_decode(
generated_ids, skip_special_tokens=True
)[0].strip()
return generated_text
def get_sam_control(self, image):
masks = self.sam_generator.generate(image)
full_img, res = show_anns(masks)
return full_img, res
def get_click_mask(self, image, clicked_points):
self.mask_predictor.set_image(image)
# Separate the points and labels
points, labels = zip(*[(point[:2], point[2])
for point in clicked_points])
# Convert the points and labels to numpy arrays
input_point = np.array(points)
input_label = np.array(labels)
masks, _, _ = self.mask_predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
return masks
@torch.inference_mode()
def process_image_click(
self,
original_image: gr.Image,
point_prompt: gr.Radio,
clicked_points: gr.State,
image_resolution,
evt: gr.SelectData,
):
# Get the clicked coordinates
clicked_coords = evt.index
x, y = clicked_coords
label = point_prompt
lab = 1 if label == "Foreground Point" else 0
clicked_points.append((x, y, lab))
input_image = np.array(original_image, dtype=np.uint8)
H, W, C = input_image.shape
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
# Update the clicked_points
resized_points = resize_points(
clicked_points, input_image.shape, image_resolution
)
mask_click_np = self.get_click_mask(img, resized_points)
# Convert mask_click_np to HWC format
mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0
mask_image = HWC3(mask_click_np.astype(np.uint8))
mask_image = cv2.resize(
mask_image, (W, H), interpolation=cv2.INTER_LINEAR)
# mask_image = Image.fromarray(mask_image_tmp)
# Draw circles for all clicked points
edited_image = input_image
for x, y, lab in clicked_points:
# Set the circle color based on the label
color = (255, 0, 0) if lab == 1 else (0, 0, 255)
# Draw the circle
edited_image = cv2.circle(edited_image, (x, y), 20, color, -1)
# Set the opacity for the mask_image and edited_image
opacity_mask = 0.75
opacity_edited = 1.0
# Combine the edited_image and the mask_image using cv2.addWeighted()
overlay_image = cv2.addWeighted(
edited_image,
opacity_edited,
(mask_image *
np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8),
opacity_mask,
0,
)
return (
Image.fromarray(overlay_image),
clicked_points,
Image.fromarray(mask_image),
)
@torch.inference_mode()
@save_input_to_file # for debug use
def process(
self,
source_image,
enable_all_generate,
mask_image,
control_scale,
enable_auto_prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
detect_resolution,
ddim_steps,
guess_mode,
scale,
seed,
eta,
enable_tile=True,
refine_alignment_ratio=None,
refine_image_resolution=None,
alpha_weight=0.5,
use_scale_map=False,
condition_model=None,
ref_image=None,
attention_auto_machine_weight=1.0,
gn_auto_machine_weight=1.0,
style_fidelity=0.5,
reference_attn=True,
reference_adain=True,
ref_prompt=None,
ref_sam_scale=None,
ref_inpaint_scale=None,
ref_auto_prompt=False,
ref_textinv=True,
ref_textinv_path=None,
ref_scale=None,
):
if condition_model is None or condition_model == "EditAnything":
this_controlnet_path = self.default_controlnet_path
else:
this_controlnet_path = condition_model
input_image = (
source_image["image"]
if isinstance(source_image, dict)
else np.array(source_image, dtype=np.uint8)
)
if mask_image is None:
if enable_all_generate != self.defalut_enable_all_generate:
self.pipe = obtain_generation_model(
self.base_model_path,
self.lora_model_path,
this_controlnet_path,
enable_all_generate,
self.extra_inpaint,
)
self.defalut_enable_all_generate = enable_all_generate
if enable_all_generate:
mask_image = (
np.ones((input_image.shape[0],
input_image.shape[1], 3)) * 255
)
else:
mask_image = source_image["mask"]
else:
mask_image = np.array(mask_image, dtype=np.uint8)
if self.default_controlnet_path != this_controlnet_path:
print(
"To Use:",
this_controlnet_path,
"Current:",
self.default_controlnet_path,
)
print("Change condition model to:", this_controlnet_path)
self.pipe = obtain_generation_model(
self.base_model_path,
self.lora_model_path,
this_controlnet_path,
enable_all_generate,
self.extra_inpaint,
)
self.default_controlnet_path = this_controlnet_path
torch.cuda.empty_cache()
if self.last_ref_infer:
print("Redefine the model to overwrite the ref mode")
self.pipe = obtain_generation_model(
self.base_model_path,
self.lora_model_path,
this_controlnet_path,
enable_all_generate,
self.extra_inpaint,
)
self.last_ref_infer = False
if ref_image is not None:
ref_mask = ref_image["mask"]
ref_image = ref_image["image"]
if ref_auto_prompt or ref_textinv:
bbox = get_bounding_box(
np.array(ref_mask) / 255
) # reverse the mask to make 1 the choosen region
cropped_ref_mask = ref_mask.crop(
(bbox[0], bbox[1], bbox[2], bbox[3]))
cropped_ref_image = ref_image.crop(
(bbox[0], bbox[1], bbox[2], bbox[3]))
# cropped_ref_image.save("debug.jpg")
cropped_ref_image = np.array(cropped_ref_image) * (
np.array(cropped_ref_mask)[:, :, :3] / 255.0
)
cropped_ref_image = Image.fromarray(
cropped_ref_image.astype("uint8"))
if ref_auto_prompt:
generated_prompt = self.get_blip2_text(cropped_ref_image)
ref_prompt += generated_prompt
a_prompt += generated_prompt
print("Generated ref text:", ref_prompt)
print("Generated input text:", a_prompt)
self.last_ref_infer = True
# ref_image = cropped_ref_image
# ref_mask = cropped_ref_mask
if ref_textinv:
try:
self.pipe.load_textual_inversion(ref_textinv_path)
print("Load textinv embedding from:", ref_textinv_path)
except:
print("No textinvert embeddings found.")
ref_data_path = "./utils/tmp/textinv/img"
if not os.path.exists(ref_data_path):
os.makedirs(ref_data_path)
cropped_ref_image.save(
os.path.join(ref_data_path, 'ref.png'))
print("Ref image region is save to:", ref_data_path)
print(
"Plese finetune with run_texutal_inversion.sh in utils folder to get the textinvert embeddings.")
else:
ref_mask = None
with torch.no_grad():
if self.use_blip and enable_auto_prompt:
print("Generating text:")
blip2_prompt = self.get_blip2_text(input_image)
print("Generated text:", blip2_prompt)
if len(a_prompt) > 0:
a_prompt = blip2_prompt + "," + a_prompt
else:
a_prompt = blip2_prompt
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
print("Generating SAM seg:")
# the default SAM model is trained with 1024 size.
full_segmask, detected_map = self.get_sam_control(
resize_image(input_image, detect_resolution)
)
detected_map = HWC3(detected_map.astype(np.uint8))
detected_map = cv2.resize(
detected_map, (W, H), interpolation=cv2.INTER_LINEAR
)
control = torch.from_numpy(detected_map.copy()).float().cuda()
control = control.unsqueeze(dim=0)
control = einops.rearrange(control, "b h w c -> b c h w").clone()
mask_imag_ori = HWC3(mask_image.astype(np.uint8))
mask_image_tmp = cv2.resize(
mask_imag_ori, (W, H), interpolation=cv2.INTER_LINEAR
)
mask_image = Image.fromarray(mask_image_tmp)
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
generator = torch.manual_seed(seed)
postive_prompt = a_prompt
negative_prompt = n_prompt
prompt_embeds, negative_prompt_embeds = get_pipeline_embeds(
self.pipe, postive_prompt, negative_prompt, "cuda"
)
if enable_all_generate and self.extra_inpaint:
if ref_image is not None:
print("Not support yet.")
return
x_samples = self.pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
num_images_per_prompt=num_samples,
num_inference_steps=ddim_steps,
generator=generator,
height=H,
width=W,
image=[control.type(torch.float16)],
controlnet_conditioning_scale=[float(control_scale)],
guidance_scale=scale,
guess_mode=guess_mode,
).images
else:
multi_condition_image = []
multi_condition_scale = []
multi_condition_image.append(control.type(torch.float16))
multi_condition_scale.append(float(control_scale))
ref_multi_condition_scale = []
if ref_image is not None:
ref_multi_condition_scale.append(float(ref_sam_scale))
if self.extra_inpaint:
inpaint_image = make_inpaint_condition(img, mask_image_tmp)
multi_condition_image.append(
inpaint_image.type(torch.float16))
multi_condition_scale.append(1.0)
if ref_image is not None:
ref_multi_condition_scale.append(
float(ref_inpaint_scale))
if use_scale_map:
scale_map_tmp = source_image["mask"]
tmp = HWC3(scale_map_tmp.astype(np.uint8))
scale_map_tmp = cv2.resize(
tmp, (W, H), interpolation=cv2.INTER_LINEAR)
scale_map_tmp = Image.fromarray(scale_map_tmp)
controlnet_conditioning_scale_map = 1.0 - \
prepare_mask_image(scale_map_tmp).float()
print('scale map:', controlnet_conditioning_scale_map.size())
else:
controlnet_conditioning_scale_map = None
if isinstance(self.pipe, StableDiffusionControlNetInpaintMixingPipeline):
x_samples = self.pipe(
image=img,
mask_image=mask_image,
prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,
num_images_per_prompt=num_samples,
num_inference_steps=ddim_steps,
generator=generator,
controlnet_conditioning_image=multi_condition_image,
height=H,
width=W,
controlnet_conditioning_scale=multi_condition_scale,
guidance_scale=scale,
alpha_weight=alpha_weight,
controlnet_conditioning_scale_map=controlnet_conditioning_scale_map
).images
else:
x_samples = self.pipe(
image=img,
mask_image=mask_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
num_images_per_prompt=num_samples,
num_inference_steps=ddim_steps,
generator=generator,
controlnet_conditioning_image=multi_condition_image,
height=H,
width=W,
controlnet_conditioning_scale=multi_condition_scale,
guidance_scale=scale,
ref_image=ref_image,
ref_mask=ref_mask,
ref_prompt=ref_prompt,
attention_auto_machine_weight=attention_auto_machine_weight,
gn_auto_machine_weight=gn_auto_machine_weight,
style_fidelity=style_fidelity,
reference_attn=reference_attn,
reference_adain=reference_adain,
ref_controlnet_conditioning_scale=ref_multi_condition_scale,
guess_mode=guess_mode,
ref_scale=ref_scale,
).images
results = [x_samples[i] for i in range(num_samples)]
results_tile = []
if enable_tile:
prompt_embeds, negative_prompt_embeds = get_pipeline_embeds(
self.tile_pipe, postive_prompt, negative_prompt, "cuda"
)
for i in range(num_samples):
img_tile = PIL.Image.fromarray(
resize_image(
np.array(x_samples[i]), refine_image_resolution)
)
if i == 0:
mask_image_tile = cv2.resize(
mask_imag_ori,
(img_tile.size[0], img_tile.size[1]),
interpolation=cv2.INTER_LINEAR,
)
mask_image_tile = Image.fromarray(mask_image_tile)
if isinstance(self.pipe, StableDiffusionControlNetInpaintMixingPipeline):
x_samples_tile = self.tile_pipe(
image=img_tile,
mask_image=mask_image_tile,
prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,
num_images_per_prompt=1,
num_inference_steps=ddim_steps,
generator=generator,
controlnet_conditioning_image=img_tile,
height=img_tile.size[1],
width=img_tile.size[0],
controlnet_conditioning_scale=1.0,
alignment_ratio=refine_alignment_ratio,
guidance_scale=scale,
alpha_weight=alpha_weight,
controlnet_conditioning_scale_map=controlnet_conditioning_scale_map
).images
else:
x_samples_tile = self.tile_pipe(
image=img_tile,
mask_image=mask_image_tile,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
num_images_per_prompt=1,
num_inference_steps=ddim_steps,
generator=generator,
controlnet_conditioning_image=img_tile,
height=img_tile.size[1],
width=img_tile.size[0],
controlnet_conditioning_scale=1.0,
alignment_ratio=refine_alignment_ratio,
guidance_scale=scale,
guess_mode=guess_mode,
).images
results_tile += x_samples_tile
return results_tile, results, [full_segmask, mask_image], postive_prompt
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
|