Spaces:
Runtime error
Runtime error
File size: 10,750 Bytes
0c7479d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2
from diffusers.utils import load_image
from diffusers import UniPCMultistepScheduler
from torchvision.utils import save_image
from PIL import Image
from pytorch_lightning import seed_everything
import subprocess
from collections import OrderedDict
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import os
from annotator.util import resize_image, HWC3
import base64
from io import BytesIO
from utils.stable_diffusion_controlnet import StableDiffusionControlNetPipeline2, ControlNetModel2
def create_demo():
MAX_COLORS = 12
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_colors = """
async (canvasData) => {
const canvasEl = document.getElementById("canvas-root");
return [canvasEl._data]
}
"""
set_canvas_size = """
async (aspect) => {
if(aspect ==='square'){
_updateCanvas(512,512)
}
if(aspect ==='horizontal'){
_updateCanvas(768,512)
}
if(aspect ==='vertical'){
_updateCanvas(512,768)
}
}
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
# aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio", visible=False if is_shared_ui else True)
# Diffusion init using diffusers.
# diffusers==0.14.0 required.
base_model_path = "stabilityai/stable-diffusion-2-1"
config_dict = OrderedDict([('SAM Pretrained(v0-1)', 'shgao/edit-anything-v0-1-1'),
('LAION Pretrained(v0-3)', 'shgao/edit-anything-v0-3'),
('LAION Pretrained(v0-4)', 'shgao/edit-anything-v0-4-sd21'),
])
def obtain_generation_model(controlnet_path):
controlnet = ControlNetModel2.from_pretrained(
controlnet_path, torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline2.from_pretrained(
base_model_path, controlnet=controlnet, torch_dtype=torch.float16
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_model_cpu_offload() # disable for now because of unknow bug in accelerate
pipe.to(device)
return pipe
global default_controlnet_path
default_controlnet_path = config_dict['LAION Pretrained(v0-4)']
pipe = obtain_generation_model(default_controlnet_path)
def get_sam_control(image):
im2arr = np.array(image)
colors_map, res = None, None
ptr = 0
for color in colors:
r, g, b = color
if any(c != 255 for c in (r, g, b)):
binary_matrix = np.all(im2arr == (r, g, b), axis=-1)
if colors_map is None:
colors_map = np.zeros((im2arr.shape[0], im2arr.shape[1]), dtype=np.uint16)
res = np.zeros((im2arr.shape[0], im2arr.shape[1], 3))
colors_map[binary_matrix != 0] = ptr + 1
ptr += 1
white = np.all(im2arr == (255, 255, 255), axis=-1)
scale_map = (white != 1).astype(np.float32)
res[:, :, 0] = colors_map % 256
res[:, :, 1] = colors_map // 256
res.astype(np.float32)
return image, res, scale_map
def process_sketch(canvas_data):
nonlocal colors
base64_img = canvas_data['image']
image_data = base64.b64decode(base64_img.split(',')[1])
image = Image.open(BytesIO(image_data)).convert("RGB")
colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']]
print(colors)
# binary_matrixes['sketch'] = res
return image, "sketch loaded."
def process(condition_model, input_image, control_scale, prompt, a_prompt, n_prompt,
num_samples, image_resolution, ddim_steps, guess_mode, use_scale_map, strength, scale, seed, eta):
global default_controlnet_path
global pipe
print("To Use:", config_dict[condition_model], "Current:", default_controlnet_path)
if default_controlnet_path != config_dict[condition_model]:
print("Change condition model to:", config_dict[condition_model])
pipe = obtain_generation_model(config_dict[condition_model])
default_controlnet_path = config_dict[condition_model]
with torch.no_grad():
print("All text:", prompt)
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
# the default SAM model is trained with 1024 size.
fullseg, detected_map, scale_map = get_sam_control(input_image)
detected_map = HWC3(detected_map.astype(np.uint8))
detected_map = cv2.resize(
detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(
detected_map.copy()).float().cuda()
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
scale_map = torch.from_numpy(scale_map).float().cuda() if use_scale_map else None
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
print("control.shape", control.shape)
generator = torch.manual_seed(seed)
x_samples = pipe(
prompt=[prompt + ', ' + a_prompt] * num_samples,
negative_prompt=[n_prompt] * num_samples,
num_images_per_prompt=num_samples,
num_inference_steps=ddim_steps,
generator=generator,
height=H,
width=W,
controlnet_conditioning_scale=float(control_scale),
controlnet_conditioning_scale_map=scale_map,
image=control.type(torch.float16),
).images
results = [x_samples[i] for i in range(num_samples)]
return [fullseg] + results, prompt, "waiting for sketch..."
# disable gradio when not using GUI.
block = gr.Blocks()
with block as demo:
colors = []
with gr.Row():
gr.Markdown(
"## Generate Anything")
with gr.Row():
with gr.Column():
canvas_data = gr.JSON(value={}, visible=False)
canvas = gr.HTML(canvas_html)
aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio",
visible=False)
button_run = gr.Button("I've finished my sketch", elem_id="main_button", interactive=True)
result_text1 = gr.Text(label='sketch status:')
with gr.Column(visible=True) as post_sketch:
input_image = gr.Image(type="numpy", visible=False)
prompt = gr.Textbox(label="Prompt (Optional)")
run_button = gr.Button(label="Run")
condition_model = gr.Dropdown(choices=list(config_dict.keys()),
value=list(config_dict.keys())[0],
label='Model',
multiselect=False)
control_scale = gr.Slider(
label="Mask Align strength", info="Large value -> strict alignment with SAM mask", minimum=0,
maximum=1, value=1, step=0.1)
num_samples = gr.Slider(
label="Images", minimum=1, maximum=12, value=1, step=1)
# enable_auto_prompt = True
with gr.Accordion("Advanced options", open=False):
image_resolution = gr.Slider(
label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
strength = gr.Slider(
label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
use_scale_map = gr.Checkbox(label='Use scale map', value=False)
ddim_steps = gr.Slider(
label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1,
maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(
label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(
label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
result_text = gr.Text(label='BLIP2+Human Prompt Text')
aspect.change(None, inputs=[aspect], outputs=None, _js=set_canvas_size)
button_run.click(process_sketch, inputs=[canvas_data],
outputs=[input_image, result_text1], _js=get_js_colors, queue=False)
ips = [condition_model, input_image, control_scale, prompt, a_prompt, n_prompt,
num_samples, image_resolution, ddim_steps, guess_mode, use_scale_map, strength, scale, seed, eta]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery, result_text, result_text1])
demo.load(None, None, None, _js=load_js)
return demo
if __name__ == '__main__':
demo = create_demo()
demo.queue().launch(server_name='0.0.0.0', share=True)
|