File size: 40,364 Bytes
0c7479d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
# Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
# From https://raw.githubusercontent.com/huggingface/diffusers/53377ef83c6446033f3ee506e3ef718db817b293/examples/community/stable_diffusion_controlnet_inpaint.py
import inspect
from typing import Any, Callable, Dict, List, Optional, Union, Tuple

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer

from diffusers import AutoencoderKL, ControlNetModel, DiffusionPipeline, \
    UNet2DConditionModel, logging, StableDiffusionControlNetPipeline
from diffusers.models.controlnet import ControlNetOutput
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    PIL_INTERPOLATION,
    is_accelerate_available,
    is_accelerate_version,
    is_compiled_module,
    randn_tensor,
    replace_example_docstring,
)
from diffusers.loaders import LoraLoaderMixin

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import numpy as np
        >>> import torch
        >>> from PIL import Image
        >>> from stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline

        >>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
        >>> from diffusers import ControlNetModel, UniPCMultistepScheduler
        >>> from diffusers.utils import load_image

        >>> def ade_palette():
                return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
                        [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
                        [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
                        [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
                        [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
                        [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
                        [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
                        [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
                        [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
                        [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
                        [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
                        [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
                        [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
                        [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
                        [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
                        [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
                        [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
                        [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
                        [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
                        [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
                        [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
                        [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
                        [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
                        [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
                        [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
                        [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
                        [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
                        [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
                        [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
                        [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
                        [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
                        [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
                        [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
                        [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
                        [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
                        [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
                        [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
                        [102, 255, 0], [92, 0, 255]]

        >>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
        >>> image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")

        >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16)

        >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
                "runwayml/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
            )

        >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        >>> pipe.enable_xformers_memory_efficient_attention()
        >>> pipe.enable_model_cpu_offload()

        >>> def image_to_seg(image):
                pixel_values = image_processor(image, return_tensors="pt").pixel_values
                with torch.no_grad():
                    outputs = image_segmentor(pixel_values)
                seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
                color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)  # height, width, 3
                palette = np.array(ade_palette())
                for label, color in enumerate(palette):
                    color_seg[seg == label, :] = color
                color_seg = color_seg.astype(np.uint8)
                seg_image = Image.fromarray(color_seg)
                return seg_image

        >>> image = load_image(
                "https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
            )

        >>> mask_image = load_image(
                "https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
            )

        >>> controlnet_conditioning_image = image_to_seg(image)

        >>> image = pipe(
                "Face of a yellow cat, high resolution, sitting on a park bench",
                image,
                mask_image,
                controlnet_conditioning_image,
                num_inference_steps=20,
            ).images[0]

        >>> image.save("out.png")
        ```
"""


def prepare_image(image):
    if isinstance(image, torch.Tensor):
        # Batch single image
        if image.ndim == 3:
            image = image.unsqueeze(0)

        image = image.to(dtype=torch.float32)
    else:
        # preprocess image
        if isinstance(image, (PIL.Image.Image, np.ndarray)):
            image = [image]

        if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
            image = [np.array(i.convert("RGB"))[None, :] for i in image]
            image = np.concatenate(image, axis=0)
        elif isinstance(image, list) and isinstance(image[0], np.ndarray):
            image = np.concatenate([i[None, :] for i in image], axis=0)

        image = image.transpose(0, 3, 1, 2)
        image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0

    return image


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.prepare_mask_and_masked_image
def prepare_mask_and_masked_image(image, mask, height, width, return_image=False):
    """
    Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
    converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
    ``image`` and ``1`` for the ``mask``.

    The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
    binarized (``mask > 0.5``) and cast to ``torch.float32`` too.

    Args:
        image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
            It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
            ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
        mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
            It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
            ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.


    Raises:
        ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
        should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
        TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
            (ot the other way around).

    Returns:
        tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
            dimensions: ``batch x channels x height x width``.
    """

    if image is None:
        raise ValueError("`image` input cannot be undefined.")

    if mask is None:
        raise ValueError("`mask_image` input cannot be undefined.")

    if isinstance(image, torch.Tensor):
        if not isinstance(mask, torch.Tensor):
            raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")

        # Batch single image
        if image.ndim == 3:
            assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
            image = image.unsqueeze(0)

        # Batch and add channel dim for single mask
        if mask.ndim == 2:
            mask = mask.unsqueeze(0).unsqueeze(0)

        # Batch single mask or add channel dim
        if mask.ndim == 3:
            # Single batched mask, no channel dim or single mask not batched but channel dim
            if mask.shape[0] == 1:
                mask = mask.unsqueeze(0)

            # Batched masks no channel dim
            else:
                mask = mask.unsqueeze(1)

        assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
        assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
        assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"

        # Check image is in [-1, 1]
        if image.min() < -1 or image.max() > 1:
            raise ValueError("Image should be in [-1, 1] range")

        # Check mask is in [0, 1]
        if mask.min() < 0 or mask.max() > 1:
            raise ValueError("Mask should be in [0, 1] range")

        # Binarize mask
        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1

        # Image as float32
        image = image.to(dtype=torch.float32)
    elif isinstance(mask, torch.Tensor):
        raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
    else:
        # preprocess image
        if isinstance(image, (PIL.Image.Image, np.ndarray)):
            image = [image]
        if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
            # resize all images w.r.t passed height an width
            image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
            image = [np.array(i.convert("RGB"))[None, :] for i in image]
            image = np.concatenate(image, axis=0)
        elif isinstance(image, list) and isinstance(image[0], np.ndarray):
            image = np.concatenate([i[None, :] for i in image], axis=0)

        image = image.transpose(0, 3, 1, 2)
        image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0

        # preprocess mask
        if isinstance(mask, (PIL.Image.Image, np.ndarray)):
            mask = [mask]

        if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
            mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
            mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
            mask = mask.astype(np.float32) / 255.0
        elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
            mask = np.concatenate([m[None, None, :] for m in mask], axis=0)

        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1
        mask = torch.from_numpy(mask)

    masked_image = image * (mask < 0.5)

    # n.b. ensure backwards compatibility as old function does not return image
    if return_image:
        return mask, masked_image, image

    return mask, masked_image


def prepare_mask_image(mask_image):
    if isinstance(mask_image, torch.Tensor):
        if mask_image.ndim == 2:
            # Batch and add channel dim for single mask
            mask_image = mask_image.unsqueeze(0).unsqueeze(0)
        elif mask_image.ndim == 3 and mask_image.shape[0] == 1:
            # Single mask, the 0'th dimension is considered to be
            # the existing batch size of 1
            mask_image = mask_image.unsqueeze(0)
        elif mask_image.ndim == 3 and mask_image.shape[0] != 1:
            # Batch of mask, the 0'th dimension is considered to be
            # the batching dimension
            mask_image = mask_image.unsqueeze(1)

        # Binarize mask
        mask_image[mask_image < 0.5] = 0
        mask_image[mask_image >= 0.5] = 1
    else:
        # preprocess mask
        if isinstance(mask_image, (PIL.Image.Image, np.ndarray)):
            mask_image = [mask_image]

        if isinstance(mask_image, list) and isinstance(mask_image[0], PIL.Image.Image):
            mask_image = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask_image], axis=0)
            mask_image = mask_image.astype(np.float32) / 255.0
        elif isinstance(mask_image, list) and isinstance(mask_image[0], np.ndarray):
            mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0)

        mask_image[mask_image < 0.5] = 0
        mask_image[mask_image >= 0.5] = 1
        mask_image = torch.from_numpy(mask_image)

    return mask_image


def prepare_controlnet_conditioning_image(
        controlnet_conditioning_image, width, height, batch_size, num_images_per_prompt, device, dtype,
        do_classifier_free_guidance,
):
    if not isinstance(controlnet_conditioning_image, torch.Tensor):
        if isinstance(controlnet_conditioning_image, PIL.Image.Image):
            controlnet_conditioning_image = [controlnet_conditioning_image]

        if isinstance(controlnet_conditioning_image[0], PIL.Image.Image):
            controlnet_conditioning_image = [
                np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :]
                for i in controlnet_conditioning_image
            ]
            controlnet_conditioning_image = np.concatenate(controlnet_conditioning_image, axis=0)
            controlnet_conditioning_image = np.array(controlnet_conditioning_image).astype(np.float32) / 255.0
            controlnet_conditioning_image = controlnet_conditioning_image.transpose(0, 3, 1, 2)
            controlnet_conditioning_image = torch.from_numpy(controlnet_conditioning_image)
        elif isinstance(controlnet_conditioning_image[0], torch.Tensor):
            controlnet_conditioning_image = torch.cat(controlnet_conditioning_image, dim=0)

    image_batch_size = controlnet_conditioning_image.shape[0]

    if image_batch_size == 1:
        repeat_by = batch_size
    else:
        # image batch size is the same as prompt batch size
        repeat_by = num_images_per_prompt

    controlnet_conditioning_image = controlnet_conditioning_image.repeat_interleave(repeat_by, dim=0)

    controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype)

    if do_classifier_free_guidance:
        controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2)

    return controlnet_conditioning_image


class StableDiffusionControlNetPipeline2(StableDiffusionControlNetPipeline):
    def __call__(
            self,
            prompt: Union[str, List[str]] = None,
            image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None,
            height: Optional[int] = None,
            width: Optional[int] = None,
            num_inference_steps: int = 50,
            guidance_scale: float = 7.5,
            negative_prompt: Optional[Union[str, List[str]]] = None,
            num_images_per_prompt: Optional[int] = 1,
            eta: float = 0.0,
            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
            latents: Optional[torch.FloatTensor] = None,
            prompt_embeds: Optional[torch.FloatTensor] = None,
            negative_prompt_embeds: Optional[torch.FloatTensor] = None,
            output_type: Optional[str] = "pil",
            return_dict: bool = True,
            callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
            callback_steps: int = 1,
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
            controlnet_conditioning_scale_map=None,
            guess_mode: bool = False,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
                    `List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
                The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
                the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
                also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
                height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
                specified in init, images must be passed as a list such that each element of the list can be correctly
                batched for input to a single controlnet.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
                corresponding scale as a list.
            guess_mode (`bool`, *optional*, defaults to `False`):
                In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
                you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        # 0. Default height and width to unet
        height, width = self._default_height_width(height, width, image)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            image,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            controlnet_conditioning_scale,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

        if controlnet_conditioning_scale_map is not None:
            if isinstance(controlnet_conditioning_scale, list):
                controlnet_conditioning_scale = [scale * controlnet_conditioning_scale_map for scale in
                                                 controlnet_conditioning_scale]
            else:
                controlnet_conditioning_scale = controlnet_conditioning_scale * controlnet_conditioning_scale_map

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions

        # 3. Encode input prompt
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # 4. Prepare image
        if isinstance(controlnet, ControlNetModel):
            image = self.prepare_image(
                image=image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=controlnet.dtype,
                do_classifier_free_guidance=do_classifier_free_guidance,
                guess_mode=guess_mode,
            )
        elif isinstance(controlnet, MultiControlNetModel):
            images = []

            for image_ in image:
                image_ = self.prepare_image(
                    image=image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    device=device,
                    dtype=controlnet.dtype,
                    do_classifier_free_guidance=do_classifier_free_guidance,
                    guess_mode=guess_mode,
                )

                images.append(image_)

            image = images
        else:
            assert False

        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 6. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # controlnet(s) inference
                if guess_mode and do_classifier_free_guidance:
                    # Infer ControlNet only for the conditional batch.
                    controlnet_latent_model_input = latents
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                else:
                    controlnet_latent_model_input = latent_model_input
                    controlnet_prompt_embeds = prompt_embeds

                down_block_res_samples, mid_block_res_sample = self.controlnet(
                    controlnet_latent_model_input,
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=image,
                    conditioning_scale=controlnet_conditioning_scale,
                    guess_mode=guess_mode,
                    return_dict=False,
                )

                if guess_mode and do_classifier_free_guidance:
                    # Infered ControlNet only for the conditional batch.
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        # If we do sequential model offloading, let's offload unet and controlnet
        # manually for max memory savings
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.unet.to("cpu")
            self.controlnet.to("cpu")
            torch.cuda.empty_cache()

        if output_type == "latent":
            image = latents
            has_nsfw_concept = None
        elif output_type == "pil":
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)

            # 10. Convert to PIL
            image = self.numpy_to_pil(image)
        else:
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)


class ControlNetModel2(ControlNetModel):
    def forward(
            self,
            sample: torch.FloatTensor,
            timestep: Union[torch.Tensor, float, int],
            encoder_hidden_states: torch.Tensor,
            controlnet_cond: torch.FloatTensor,
            conditioning_scale: float = 1.0,
            class_labels: Optional[torch.Tensor] = None,
            timestep_cond: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            cross_attention_kwargs: Optional[Dict[str, Any]] = None,
            guess_mode: bool = False,
            return_dict: bool = True,
    ) -> Union[ControlNetOutput, Tuple]:
        # check channel order
        channel_order = self.config.controlnet_conditioning_channel_order

        if channel_order == "rgb":
            # in rgb order by default
            ...
        elif channel_order == "bgr":
            controlnet_cond = torch.flip(controlnet_cond, dims=[1])
        else:
            raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")

        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=sample.dtype)

        emb = self.time_embedding(t_emb, timestep_cond)

        if self.class_embedding is not None:
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
            emb = emb + class_emb

        # 2. pre-process
        sample = self.conv_in(sample)

        controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)

        sample = sample + controlnet_cond

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
            )

        # 5. Control net blocks

        controlnet_down_block_res_samples = ()

        for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
            down_block_res_sample = controlnet_block(down_block_res_sample)
            controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)

        down_block_res_samples = controlnet_down_block_res_samples

        mid_block_res_sample = self.controlnet_mid_block(sample)

        # 6. scaling
        if guess_mode and not self.config.global_pool_conditions:
            scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device)  # 0.1 to 1.0

            scales = scales * conditioning_scale
            down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
            mid_block_res_sample = mid_block_res_sample * scales[-1]  # last one
        else:
            if isinstance(conditioning_scale, float):
                down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
                mid_block_res_sample = mid_block_res_sample * conditioning_scale
            else:
                assert isinstance(conditioning_scale, torch.Tensor)
                if len(conditioning_scale.shape) == 2:
                    conditioning_scale = conditioning_scale[None, None]
                elif len(conditioning_scale.shape) == 3:
                    conditioning_scale = conditioning_scale[None]
                down_block_res_samples = [
                    sample * F.interpolate(conditioning_scale, sample.shape[-2:],
                                           mode='bilinear', align_corners=True).type(sample.dtype)
                    for sample in down_block_res_samples
                ]
                mid_block_res_sample = mid_block_res_sample * F.interpolate(
                    conditioning_scale, mid_block_res_sample.shape[-2:],
                    mode='bilinear', align_corners=True
                ).type(sample.dtype)

        if self.config.global_pool_conditions:
            down_block_res_samples = [
                torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
            ]
            mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)

        if not return_dict:
            return (down_block_res_samples, mid_block_res_sample)

        return ControlNetOutput(
            down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
        )