Spaces:
Runtime error
Runtime error
File size: 48,417 Bytes
0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d 78acc58 0c7479d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 |
# Based on https://raw.githubusercontent.com/okotaku/diffusers/feature/reference_only_control/examples/community/stable_diffusion_reference.py
# Inspired by: https://github.com/Mikubill/sd-webui-controlnet/discussions/1236
import torch.fft as fft
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
import numpy as np
import PIL.Image
import torch
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.unet_2d_blocks import (
CrossAttnDownBlock2D,
CrossAttnUpBlock2D,
DownBlock2D,
UpBlock2D,
)
from diffusers.utils import PIL_INTERPOLATION, logging
import torch.nn.functional as F
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
>>> pipe = StableDiffusionReferencePipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
safety_checker=None,
torch_dtype=torch.float16
).to('cuda:0')
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config)
>>> result_img = pipe(ref_image=input_image,
prompt="1girl",
num_inference_steps=20,
reference_attn=True,
reference_adain=True).images[0]
>>> result_img.show()
```
"""
def torch_dfs(model: torch.nn.Module):
result = [model]
for child in model.children():
result += torch_dfs(child)
return result
@torch.no_grad()
def add_freq_feature(feature1, feature2, ref_ratio):
"""
feature1: reference feature
feature2: target feature
ref_ratio: larger ratio means larger reference frequency
"""
# Convert features to float32 (if not already) for compatibility with fft operations
data_type = feature2.dtype
feature1 = feature1.to(torch.float32)
feature2 = feature2.to(torch.float32)
# Compute the Fourier transforms of both features
spectrum1 = fft.fftn(feature1, dim=(-2, -1))
spectrum2 = fft.fftn(feature2, dim=(-2, -1))
# Extract high-frequency magnitude and phase from feature1
magnitude1 = torch.abs(spectrum1)
# phase1 = torch.angle(spectrum1)
# Extract magnitude and phase from feature2
magnitude2 = torch.abs(spectrum2)
phase2 = torch.angle(spectrum2)
magnitude2.mul_((1-ref_ratio)).add_(magnitude1 * ref_ratio)
# phase2.mul_(1.0).add_(phase1 * 0.0)
# Combine magnitude and phase information
mixed_spectrum = torch.polar(magnitude2, phase2)
# Compute the inverse Fourier transform to get the mixed feature
mixed_feature = fft.ifftn(mixed_spectrum, dim=(-2, -1))
del feature1, feature2, spectrum1, spectrum2, magnitude1, magnitude2, phase2, mixed_spectrum
# Convert back to the original data type and return the result
return mixed_feature.to(data_type)
@torch.no_grad()
def save_ref_feature(feature, mask):
"""
feature: n,c,h,w
mask: n,1,h,w
return n,c,h,w
"""
return feature * mask
@torch.no_grad()
def mix_ref_feature(feature, ref_fea_bank, cfg=True, ref_scale=0.0, dim3=False):
"""
feature: n,l,c or n,c,h,w
ref_fea_bank: [(n,c,h,w)]
cfg: True/False
return n,l,c or n,c,h,w
"""
if cfg:
ref_fea = torch.cat(
(ref_fea_bank+ref_fea_bank), dim=0)
else:
ref_fea = ref_fea_bank
if dim3:
feature = feature.permute(0, 2, 1).view(ref_fea.shape)
mixed_feature = add_freq_feature(ref_fea, feature, ref_scale)
if dim3:
mixed_feature = mixed_feature.view(
ref_fea.shape[0], ref_fea.shape[1], -1).permute(0, 2, 1)
del ref_fea
del feature
return mixed_feature
def mix_norm_feature(x, inpaint_mask, mean_bank, var_bank, do_classifier_free_guidance, style_fidelity, uc_mask, eps=1e-6):
"""
x: input feature n,c,h,w
inpaint_mask: mask region to inpain
"""
# get the inpainting region and only mix this region.
scale_ratio = inpaint_mask.shape[2] / x.shape[2]
this_inpaint_mask = F.interpolate(
inpaint_mask.to(x.device), scale_factor=1 / scale_ratio
)
this_inpaint_mask = this_inpaint_mask.repeat(
x.shape[0], x.shape[1], 1, 1
).bool()
masked_x = (
x[this_inpaint_mask]
.detach()
.clone()
.view(x.shape[0], x.shape[1], -1, 1)
)
var, mean = torch.var_mean(
masked_x, dim=(2, 3), keepdim=True, correction=0
)
std = torch.maximum(
var, torch.zeros_like(var) + eps) ** 0.5
mean_acc = sum(mean_bank) / float(len(mean_bank))
var_acc = sum(var_bank) / float(len(var_bank))
std_acc = (
torch.maximum(var_acc, torch.zeros_like(
var_acc) + eps) ** 0.5
)
x_uc = (((masked_x - mean) / std) * std_acc) + mean_acc
x_c = x_uc.clone()
if do_classifier_free_guidance and style_fidelity > 0:
x_c[uc_mask] = masked_x[uc_mask]
masked_x = style_fidelity * x_c + \
(1.0 - style_fidelity) * x_uc
x[this_inpaint_mask] = masked_x.view(-1)
return x
class StableDiffusionReferencePipeline:
def prepare_ref_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
if not isinstance(image, torch.Tensor):
if isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
images = []
for image_ in image:
image_ = image_.convert("RGB")
image_ = image_.resize(
(width, height), resample=PIL_INTERPOLATION["lanczos"]
)
image_ = np.array(image_)
image_ = image_[None, :]
images.append(image_)
image = images
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = (image - 0.5) / 0.5
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
def prepare_ref_latents(
self,
refimage,
batch_size,
dtype,
device,
generator,
do_classifier_free_guidance,
):
refimage = refimage.to(device=device, dtype=dtype)
# encode the mask image into latents space so we can concatenate it to the latents
if isinstance(generator, list):
ref_image_latents = [
self.vae.encode(refimage[i: i + 1]).latent_dist.sample(
generator=generator[i]
)
for i in range(batch_size)
]
ref_image_latents = torch.cat(ref_image_latents, dim=0)
else:
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(
generator=generator
)
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method
if ref_image_latents.shape[0] < batch_size:
if not batch_size % ref_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
ref_image_latents = ref_image_latents.repeat(
batch_size // ref_image_latents.shape[0], 1, 1, 1
)
ref_image_latents = (
torch.cat([ref_image_latents] * 2)
if do_classifier_free_guidance
else ref_image_latents
)
# aligning device to prevent device errors when concating it with the latent model input
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
return ref_image_latents
def check_ref_input(self, reference_attn, reference_adain):
assert (
reference_attn or reference_adain
), "`reference_attn` or `reference_adain` must be True."
def redefine_ref_model(
self, model, reference_attn, reference_adain, model_type="unet"
):
def hacked_basic_transformer_inner_forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
):
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
(
norm_hidden_states,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
) = self.norm1(
hidden_states,
timestep,
class_labels,
hidden_dtype=hidden_states.dtype,
)
else:
norm_hidden_states = self.norm1(hidden_states)
# 1. Self-Attention
cross_attention_kwargs = (
cross_attention_kwargs if cross_attention_kwargs is not None else {}
)
if self.only_cross_attention:
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states
if self.only_cross_attention
else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
else:
if self.MODE == "write":
if self.attention_auto_machine_weight > self.attn_weight:
# print("hacked_basic_transformer_inner_forward")
scale_ratio = (
(self.ref_mask.shape[2] * self.ref_mask.shape[3])
/ norm_hidden_states.shape[1]
) ** 0.5
this_ref_mask = F.interpolate(
self.ref_mask.to(norm_hidden_states.device),
scale_factor=1 / scale_ratio,
)
resize_norm_hidden_states = norm_hidden_states.view(
norm_hidden_states.shape[0],
this_ref_mask.shape[2],
this_ref_mask.shape[3],
-1,
).permute(0, 3, 1, 2)
ref_scale = 1.0
resize_norm_hidden_states = F.interpolate(
resize_norm_hidden_states,
scale_factor=ref_scale,
mode="bilinear",
)
this_ref_mask = F.interpolate(
this_ref_mask, scale_factor=ref_scale
)
self.fea_bank.append(save_ref_feature(
resize_norm_hidden_states, this_ref_mask))
this_ref_mask = this_ref_mask.repeat(
resize_norm_hidden_states.shape[0],
resize_norm_hidden_states.shape[1],
1,
1,
).bool()
masked_norm_hidden_states = (
resize_norm_hidden_states[this_ref_mask]
.detach()
.clone()
.view(
resize_norm_hidden_states.shape[0],
resize_norm_hidden_states.shape[1],
-1,
)
)
masked_norm_hidden_states = masked_norm_hidden_states.permute(
0, 2, 1
)
self.bank.append(masked_norm_hidden_states)
del masked_norm_hidden_states
del this_ref_mask
del resize_norm_hidden_states
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states
if self.only_cross_attention
else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.MODE == "read":
if self.attention_auto_machine_weight > self.attn_weight:
freq_norm_hidden_states = mix_ref_feature(
norm_hidden_states,
self.fea_bank,
cfg=self.do_classifier_free_guidance,
ref_scale=self.ref_scale,
dim3=True)
self.fea_bank.clear()
this_bank = torch.cat(self.bank+self.bank, dim=0)
ref_hidden_states = torch.cat(
(freq_norm_hidden_states, this_bank), dim=1
)
del this_bank
self.bank.clear()
attn_output_uc = self.attn1(
freq_norm_hidden_states,
encoder_hidden_states=ref_hidden_states,
**cross_attention_kwargs,
)
del ref_hidden_states
attn_output_c = attn_output_uc.clone()
if self.do_classifier_free_guidance and self.style_fidelity > 0:
attn_output_c[self.uc_mask] = self.attn1(
norm_hidden_states[self.uc_mask],
encoder_hidden_states=norm_hidden_states[self.uc_mask],
**cross_attention_kwargs,
)
attn_output = (
self.style_fidelity * attn_output_c
+ (1.0 - self.style_fidelity) * attn_output_uc
)
self.bank.clear()
self.fea_bank.clear()
del attn_output_c
del attn_output_uc
else:
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states
if self.only_cross_attention
else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
self.bank.clear()
self.fea_bank.clear()
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm2(hidden_states)
)
# 2. Cross-Attention
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = (
norm_hidden_states *
(1 + scale_mlp[:, None]) + shift_mlp[:, None]
)
ff_output = self.ff(norm_hidden_states)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
def hacked_mid_forward(self, *args, **kwargs):
eps = 1e-6
x = self.original_forward(*args, **kwargs)
if self.MODE == "write":
if self.gn_auto_machine_weight >= self.gn_weight:
# mask var mean
scale_ratio = self.ref_mask.shape[2] / x.shape[2]
this_ref_mask = F.interpolate(
self.ref_mask.to(x.device), scale_factor=1 / scale_ratio
)
self.fea_bank.append(save_ref_feature(
x, this_ref_mask))
this_ref_mask = this_ref_mask.repeat(
x.shape[0], x.shape[1], 1, 1
).bool()
masked_x = (
x[this_ref_mask]
.detach()
.clone()
.view(x.shape[0], x.shape[1], -1, 1)
)
var, mean = torch.var_mean(
masked_x, dim=(2, 3), keepdim=True, correction=0
)
self.mean_bank.append(torch.cat([mean]*2, dim=0))
self.var_bank.append(torch.cat([var]*2, dim=0))
if self.MODE == "read":
if (
self.gn_auto_machine_weight >= self.gn_weight
and len(self.mean_bank) > 0
and len(self.var_bank) > 0
):
# print("hacked_mid_forward")
x = mix_ref_feature(
x, self.fea_bank, cfg=self.do_classifier_free_guidance, ref_scale=self.ref_scale)
self.fea_bank = []
x = mix_norm_feature(x, self.inpaint_mask, self.mean_bank, self.var_bank,
self.do_classifier_free_guidance,
self.style_fidelity, self.uc_mask)
self.mean_bank = []
self.var_bank = []
return x
def hack_CrossAttnDownBlock2D_forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
eps = 1e-6
# TODO(Patrick, William) - attention mask is not used
output_states = ()
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
hidden_states = resnet(hidden_states, temb)
if self.MODE == "write":
if self.gn_auto_machine_weight >= self.gn_weight:
# var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
# mask var mean
scale_ratio = self.ref_mask.shape[2] / \
hidden_states.shape[2]
this_ref_mask = F.interpolate(
self.ref_mask.to(hidden_states.device),
scale_factor=1 / scale_ratio,
)
self.fea_bank0.append(save_ref_feature(
hidden_states, this_ref_mask))
this_ref_mask = this_ref_mask.repeat(
hidden_states.shape[0], hidden_states.shape[1], 1, 1
).bool()
masked_hidden_states = (
hidden_states[this_ref_mask]
.detach()
.clone()
.view(hidden_states.shape[0], hidden_states.shape[1], -1, 1)
)
var, mean = torch.var_mean(
masked_hidden_states, dim=(2, 3), keepdim=True, correction=0
)
self.mean_bank0.append(torch.cat([mean]*2, dim=0))
self.var_bank0.append(torch.cat([var]*2, dim=0))
if self.MODE == "read":
if (
self.gn_auto_machine_weight >= self.gn_weight
and len(self.mean_bank0) > 0
and len(self.var_bank0) > 0
):
# print("hacked_CrossAttnDownBlock2D_forward0")
hidden_states = mix_ref_feature(
hidden_states, [self.fea_bank0[i]], cfg=self.do_classifier_free_guidance, ref_scale=self.ref_scale)
hidden_states = mix_norm_feature(hidden_states, self.inpaint_mask, self.mean_bank0[i], self.var_bank0[i],
self.do_classifier_free_guidance,
self.style_fidelity, self.uc_mask)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
if self.MODE == "write":
if self.gn_auto_machine_weight >= self.gn_weight:
# mask var mean
scale_ratio = self.ref_mask.shape[2] / \
hidden_states.shape[2]
this_ref_mask = F.interpolate(
self.ref_mask.to(hidden_states.device),
scale_factor=1 / scale_ratio,
)
self.fea_bank.append(save_ref_feature(
hidden_states, this_ref_mask))
this_ref_mask = this_ref_mask.repeat(
hidden_states.shape[0], hidden_states.shape[1], 1, 1
).bool()
masked_hidden_states = (
hidden_states[this_ref_mask]
.detach()
.clone()
.view(hidden_states.shape[0], hidden_states.shape[1], -1, 1)
)
var, mean = torch.var_mean(
masked_hidden_states, dim=(2, 3), keepdim=True, correction=0
)
self.mean_bank.append(torch.cat([mean]*2, dim=0))
self.var_bank.append(torch.cat([var]*2, dim=0))
if self.MODE == "read":
if (
self.gn_auto_machine_weight >= self.gn_weight
and len(self.mean_bank) > 0
and len(self.var_bank) > 0
):
# print("hack_CrossAttnDownBlock2D_forward")
hidden_states = mix_ref_feature(
hidden_states, [self.fea_bank[i]], cfg=self.do_classifier_free_guidance, ref_scale=self.ref_scale)
hidden_states = mix_norm_feature(hidden_states, self.inpaint_mask, self.mean_bank[i], self.var_bank[i],
self.do_classifier_free_guidance,
self.style_fidelity, self.uc_mask)
output_states = output_states + (hidden_states,)
if self.MODE == "read":
self.mean_bank0 = []
self.var_bank0 = []
self.mean_bank = []
self.var_bank = []
self.fea_bank0 = []
self.fea_bank = []
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def hacked_DownBlock2D_forward(self, hidden_states, temb=None):
eps = 1e-6
output_states = ()
for i, resnet in enumerate(self.resnets):
hidden_states = resnet(hidden_states, temb)
if self.MODE == "write":
if self.gn_auto_machine_weight >= self.gn_weight:
# var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
# mask var mean
scale_ratio = self.ref_mask.shape[2] / \
hidden_states.shape[2]
this_ref_mask = F.interpolate(
self.ref_mask.to(hidden_states.device),
scale_factor=1 / scale_ratio,
)
self.fea_bank.append(save_ref_feature(
hidden_states, this_ref_mask))
this_ref_mask = this_ref_mask.repeat(
hidden_states.shape[0], hidden_states.shape[1], 1, 1
).bool()
masked_hidden_states = (
hidden_states[this_ref_mask]
.detach()
.clone()
.view(hidden_states.shape[0], hidden_states.shape[1], -1, 1)
)
var, mean = torch.var_mean(
masked_hidden_states, dim=(2, 3), keepdim=True, correction=0
)
self.mean_bank.append(torch.cat([mean]*2, dim=0))
self.var_bank.append(torch.cat([var]*2, dim=0))
if self.MODE == "read":
if (
self.gn_auto_machine_weight >= self.gn_weight
and len(self.mean_bank) > 0
and len(self.var_bank) > 0
):
# print("hacked_DownBlock2D_forward")
hidden_states = mix_ref_feature(
hidden_states, [self.fea_bank[i]], cfg=self.do_classifier_free_guidance, ref_scale=self.ref_scale)
hidden_states = mix_norm_feature(hidden_states, self.inpaint_mask, self.mean_bank[i], self.var_bank[i],
self.do_classifier_free_guidance,
self.style_fidelity, self.uc_mask)
output_states = output_states + (hidden_states,)
if self.MODE == "read":
self.mean_bank = []
self.var_bank = []
self.fea_bank = []
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def hacked_CrossAttnUpBlock2D_forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
eps = 1e-6
# TODO(Patrick, William) - attention mask is not used
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat(
[hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
if self.MODE == "write":
if self.gn_auto_machine_weight >= self.gn_weight:
# var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
# mask var mean
scale_ratio = self.ref_mask.shape[2] / \
hidden_states.shape[2]
this_ref_mask = F.interpolate(
self.ref_mask.to(hidden_states.device),
scale_factor=1 / scale_ratio,
)
self.fea_bank0.append(save_ref_feature(
hidden_states, this_ref_mask))
this_ref_mask = this_ref_mask.repeat(
hidden_states.shape[0], hidden_states.shape[1], 1, 1
).bool()
masked_hidden_states = (
hidden_states[this_ref_mask]
.detach()
.clone()
.view(hidden_states.shape[0], hidden_states.shape[1], -1, 1)
)
var, mean = torch.var_mean(
masked_hidden_states, dim=(2, 3), keepdim=True, correction=0
)
self.mean_bank0.append(torch.cat([mean]*2, dim=0))
self.var_bank0.append(torch.cat([var]*2, dim=0))
if self.MODE == "read":
if (
self.gn_auto_machine_weight >= self.gn_weight
and len(self.mean_bank0) > 0
and len(self.var_bank0) > 0
):
# print("hacked_CrossAttnUpBlock2D_forward1")
hidden_states = mix_ref_feature(
hidden_states, [self.fea_bank0[i]], cfg=self.do_classifier_free_guidance, ref_scale=self.ref_scale)
hidden_states = mix_norm_feature(hidden_states, self.inpaint_mask, self.mean_bank0[i], self.var_bank0[i],
self.do_classifier_free_guidance,
self.style_fidelity, self.uc_mask)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
# attention_mask=attention_mask,
# encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
if self.MODE == "write":
if self.gn_auto_machine_weight >= self.gn_weight:
# var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
# mask var mean
scale_ratio = self.ref_mask.shape[2] / \
hidden_states.shape[2]
this_ref_mask = F.interpolate(
self.ref_mask.to(hidden_states.device),
scale_factor=1 / scale_ratio,
)
self.fea_bank.append(save_ref_feature(
hidden_states, this_ref_mask))
this_ref_mask = this_ref_mask.repeat(
hidden_states.shape[0], hidden_states.shape[1], 1, 1
).bool()
masked_hidden_states = (
hidden_states[this_ref_mask]
.detach()
.clone()
.view(hidden_states.shape[0], hidden_states.shape[1], -1, 1)
)
var, mean = torch.var_mean(
masked_hidden_states, dim=(2, 3), keepdim=True, correction=0
)
self.mean_bank.append(torch.cat([mean]*2, dim=0))
self.var_bank.append(torch.cat([var]*2, dim=0))
if self.MODE == "read":
if (
self.gn_auto_machine_weight >= self.gn_weight
and len(self.mean_bank) > 0
and len(self.var_bank) > 0
):
# print("hacked_CrossAttnUpBlock2D_forward")
hidden_states = mix_ref_feature(
hidden_states, [self.fea_bank[i]], cfg=self.do_classifier_free_guidance, ref_scale=self.ref_scale)
hidden_states = mix_norm_feature(hidden_states, self.inpaint_mask, self.mean_bank[i], self.var_bank[i],
self.do_classifier_free_guidance,
self.style_fidelity, self.uc_mask)
if self.MODE == "read":
self.mean_bank0 = []
self.var_bank0 = []
self.mean_bank = []
self.var_bank = []
self.fea_bank = []
self.fea_bank0 = []
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
def hacked_UpBlock2D_forward(
self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None
):
eps = 1e-6
for i, resnet in enumerate(self.resnets):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat(
[hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
if self.MODE == "write":
if self.gn_auto_machine_weight >= self.gn_weight:
# var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
# mask var mean
scale_ratio = self.ref_mask.shape[2] / \
hidden_states.shape[2]
this_ref_mask = F.interpolate(
self.ref_mask.to(hidden_states.device),
scale_factor=1 / scale_ratio,
)
self.fea_bank.append(save_ref_feature(
hidden_states, this_ref_mask))
this_ref_mask = this_ref_mask.repeat(
hidden_states.shape[0], hidden_states.shape[1], 1, 1
).bool()
masked_hidden_states = (
hidden_states[this_ref_mask]
.detach()
.clone()
.view(hidden_states.shape[0], hidden_states.shape[1], -1, 1)
)
var, mean = torch.var_mean(
masked_hidden_states, dim=(2, 3), keepdim=True, correction=0
)
self.mean_bank.append(torch.cat([mean]*2, dim=0))
self.var_bank.append(torch.cat([var]*2, dim=0))
if self.MODE == "read":
if (
self.gn_auto_machine_weight >= self.gn_weight
and len(self.mean_bank) > 0
and len(self.var_bank) > 0
):
# print("hacked_UpBlock2D_forward")
hidden_states = mix_ref_feature(
hidden_states, [self.fea_bank[i]], cfg=self.do_classifier_free_guidance, ref_scale=self.ref_scale)
hidden_states = mix_norm_feature(hidden_states, self.inpaint_mask, self.mean_bank[i], self.var_bank[i],
self.do_classifier_free_guidance,
self.style_fidelity, self.uc_mask)
if self.MODE == "read":
self.mean_bank = []
self.var_bank = []
self.fea_bank = []
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
if model_type == "unet":
if reference_attn:
attn_modules = [
module
for module in torch_dfs(model)
if isinstance(module, BasicTransformerBlock)
]
attn_modules = sorted(
attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
)
for i, module in enumerate(attn_modules):
module._original_inner_forward = module.forward
module.forward = hacked_basic_transformer_inner_forward.__get__(
module, BasicTransformerBlock
)
module.bank = []
module.fea_bank = []
module.attn_weight = float(i) / float(len(attn_modules))
module.attention_auto_machine_weight = (
self.attention_auto_machine_weight
)
module.gn_auto_machine_weight = self.gn_auto_machine_weight
module.do_classifier_free_guidance = (
self.do_classifier_free_guidance
)
module.do_classifier_free_guidance = (
self.do_classifier_free_guidance
)
module.uc_mask = self.uc_mask
module.style_fidelity = self.style_fidelity
module.ref_mask = self.ref_mask
module.ref_scale = self.ref_scale
else:
attn_modules = None
if reference_adain:
gn_modules = [model.mid_block]
model.mid_block.gn_weight = 0
down_blocks = model.down_blocks
for w, module in enumerate(down_blocks):
module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
gn_modules.append(module)
# print(module.__class__.__name__,module.gn_weight)
up_blocks = model.up_blocks
for w, module in enumerate(up_blocks):
module.gn_weight = float(w) / float(len(up_blocks))
gn_modules.append(module)
# print(module.__class__.__name__,module.gn_weight)
for i, module in enumerate(gn_modules):
if getattr(module, "original_forward", None) is None:
module.original_forward = module.forward
if i == 0:
# mid_block
module.forward = hacked_mid_forward.__get__(
module, torch.nn.Module
)
# elif isinstance(module, CrossAttnDownBlock2D):
# module.forward = hack_CrossAttnDownBlock2D_forward.__get__(
# module, CrossAttnDownBlock2D
# )
# module.mean_bank0 = []
# module.var_bank0 = []
# module.fea_bank0 = []
elif isinstance(module, DownBlock2D):
module.forward = hacked_DownBlock2D_forward.__get__(
module, DownBlock2D
)
# elif isinstance(module, CrossAttnUpBlock2D):
# module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
# module.mean_bank0 = []
# module.var_bank0 = []
# module.fea_bank0 = []
elif isinstance(module, UpBlock2D):
module.forward = hacked_UpBlock2D_forward.__get__(
module, UpBlock2D
)
module.mean_bank0 = []
module.var_bank0 = []
module.fea_bank0 = []
module.mean_bank = []
module.var_bank = []
module.fea_bank = []
module.attention_auto_machine_weight = (
self.attention_auto_machine_weight
)
module.gn_auto_machine_weight = self.gn_auto_machine_weight
module.do_classifier_free_guidance = (
self.do_classifier_free_guidance
)
module.do_classifier_free_guidance = (
self.do_classifier_free_guidance
)
module.uc_mask = self.uc_mask
module.style_fidelity = self.style_fidelity
module.ref_mask = self.ref_mask
module.inpaint_mask = self.inpaint_mask
module.ref_scale = self.ref_scale
else:
gn_modules = None
elif model_type == "controlnet":
model = model.nets[-1] # only hack the inpainting controlnet
if reference_attn:
attn_modules = [
module
for module in torch_dfs(model)
if isinstance(module, BasicTransformerBlock)
]
attn_modules = sorted(
attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
)
for i, module in enumerate(attn_modules):
module._original_inner_forward = module.forward
module.forward = hacked_basic_transformer_inner_forward.__get__(
module, BasicTransformerBlock
)
module.bank = []
module.fea_bank = []
# float(i) / float(len(attn_modules))
module.attn_weight = 0.0
module.attention_auto_machine_weight = (
self.attention_auto_machine_weight
)
module.gn_auto_machine_weight = self.gn_auto_machine_weight
module.do_classifier_free_guidance = (
self.do_classifier_free_guidance
)
module.do_classifier_free_guidance = (
self.do_classifier_free_guidance
)
module.uc_mask = self.uc_mask
module.style_fidelity = self.style_fidelity
module.ref_mask = self.ref_mask
module.ref_scale = self.ref_scale
else:
attn_modules = None
# gn_modules = None
if reference_adain:
gn_modules = [model.mid_block]
model.mid_block.gn_weight = 0
down_blocks = model.down_blocks
for w, module in enumerate(down_blocks):
module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
gn_modules.append(module)
# print(module.__class__.__name__,module.gn_weight)
for i, module in enumerate(gn_modules):
if getattr(module, "original_forward", None) is None:
module.original_forward = module.forward
if i == 0:
# mid_block
module.forward = hacked_mid_forward.__get__(
module, torch.nn.Module
)
# elif isinstance(module, CrossAttnDownBlock2D):
# module.forward = hack_CrossAttnDownBlock2D_forward.__get__(
# module, CrossAttnDownBlock2D
# )
# module.mean_bank0 = []
# module.var_bank0 = []
# module.fea_bank0 = []
elif isinstance(module, DownBlock2D):
module.forward = hacked_DownBlock2D_forward.__get__(
module, DownBlock2D
)
module.mean_bank = []
module.var_bank = []
module.fea_bank = []
module.attention_auto_machine_weight = (
self.attention_auto_machine_weight
)
module.gn_auto_machine_weight = self.gn_auto_machine_weight
module.do_classifier_free_guidance = (
self.do_classifier_free_guidance
)
module.do_classifier_free_guidance = (
self.do_classifier_free_guidance
)
module.uc_mask = self.uc_mask
module.style_fidelity = self.style_fidelity
module.ref_mask = self.ref_mask
module.inpaint_mask = self.inpaint_mask
module.ref_scale = self.ref_scale
else:
gn_modules = None
return attn_modules, gn_modules
def change_module_mode(self, mode, attn_modules, gn_modules):
if attn_modules is not None:
for i, module in enumerate(attn_modules):
module.MODE = mode
if gn_modules is not None:
for i, module in enumerate(gn_modules):
module.MODE = mode
|