File size: 7,916 Bytes
0c7479d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Code from https://github.com/LUSSeg/ImageNetSegModel/blob/main/util/transforms.py
from __future__ import division

import math
import random
import warnings
from collections import Iterable

import numpy as np
import torch
from torchvision.transforms import functional as F

try:
    from torchvision.transforms import InterpolationMode

    NEAREST = InterpolationMode.NEAREST
    BILINEAR = InterpolationMode.BILINEAR
    BICUBIC = InterpolationMode.BICUBIC
    LANCZOS = InterpolationMode.LANCZOS
    HAMMING = InterpolationMode.HAMMING
    HAMMING = InterpolationMode.HAMMING

    _pil_interpolation_to_str = {
        InterpolationMode.NEAREST: 'InterpolationMode.NEAREST',
        InterpolationMode.BILINEAR: 'InterpolationMode.BILINEAR',
        InterpolationMode.BICUBIC: 'InterpolationMode.BICUBIC',
        InterpolationMode.LANCZOS: 'InterpolationMode.LANCZOS',
        InterpolationMode.HAMMING: 'InterpolationMode.HAMMING',
        InterpolationMode.BOX: 'InterpolationMode.BOX',
    }

except:
    from PIL import Image

    NEAREST = Image.NEAREST
    BILINEAR = Image.BILINEAR
    BICUBIC = Image.BICUBIC
    LANCZOS = Image.LANCZOS
    HAMMING = Image.HAMMING
    HAMMING = Image.HAMMING

    _pil_interpolation_to_str = {
        Image.NEAREST: 'PIL.Image.NEAREST',
        Image.BILINEAR: 'PIL.Image.BILINEAR',
        Image.BICUBIC: 'PIL.Image.BICUBIC',
        Image.LANCZOS: 'PIL.Image.LANCZOS',
        Image.HAMMING: 'PIL.Image.HAMMING',
        Image.BOX: 'PIL.Image.BOX',
    }

def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif isinstance(img, torch.Tensor) and img.dim() > 2:
        return img.shape[-2:][::-1]
    else:
        raise TypeError('Unexpected type {}'.format(type(img)))


class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects):
            list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img, gt):
        for t in self.transforms:
            if 'RandomResizedCrop' in t.__class__.__name__:
                img, gt = t(img, gt)
            elif 'Flip' in t.__class__.__name__:
                img, gt = t(img, gt)
            elif 'ToTensor' in t.__class__.__name__:
                img, gt = t(img, gt)
            else:
                img = t(img)
        gt = gt.float()

        return img, gt

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomHorizontalFlip(object):
    """Horizontally flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """
    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img, gt):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
        if random.random() < self.p:
            return F.hflip(img), F.hflip(gt)
        return img, gt

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomResizedCrop(object):
    """Crop the given PIL Image to random size and aspect ratio.

    A crop of random size (default: of 0.08 to 1.0) of the original size
    and a random aspect ratio (default: of 3/4 to 4/3) of the original
    aspect ratio is made. This crop is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
        interpolation: Default: PIL.Image.BILINEAR
    """
    def __init__(self,
                 size,
                 scale=(0.08, 1.0),
                 ratio=(3. / 4., 4. / 3.),
                 interpolation=BILINEAR):
        if isinstance(size, (tuple, list)):
            self.size = size
        else:
            self.size = (size, size)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn('range should be of kind (min, max)')

        self.interpolation = interpolation
        self.scale = scale
        self.ratio = ratio

    @staticmethod
    def get_params(img, scale, ratio):
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
            scale (tuple):
                range of size of the origin size cropped
            ratio (tuple):
            range of aspect ratio of the origin aspect ratio cropped

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
        width, height = _get_image_size(img)
        area = height * width

        for attempt in range(10):
            target_area = random.uniform(*scale) * area
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if (in_ratio < min(ratio)):
            w = width
            h = int(round(w / min(ratio)))
        elif (in_ratio > max(ratio)):
            h = height
            w = int(round(h * max(ratio)))
        else:  # whole image
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w

    def __call__(self, img, gt):
        """
        Args:
            img (PIL Image): Image to be cropped and resized.

        Returns:
            PIL Image: Randomly cropped and resized image.
        """
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
        return F.resized_crop(
            img, i, j, h, w, self.size, self.interpolation), \
            F.resized_crop(
                gt, i, j, h, w, self.size, NEAREST)

    def __repr__(self):
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
        format_string += ', scale={0}'.format(
            tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(
            tuple(round(r, 4) for r in self.ratio))
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a torch.FloatTensor of
    shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the
    modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
    """
    def __call__(self, pic, gt):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic), torch.from_numpy(np.array(gt))

    def __repr__(self):
        return self.__class__.__name__ + '()'