Spaces:
Runtime error
Runtime error
import numpy as np | |
import cv2 | |
import os | |
import pickle | |
annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts') | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
def resize_image(input_image, resolution): | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
return img | |
def resize_points(clicked_points, original_shape, resolution): | |
original_height, original_width, _ = original_shape | |
original_height = float(original_height) | |
original_width = float(original_width) | |
scale_factor = float(resolution) / min(original_height, original_width) | |
resized_points = [] | |
for point in clicked_points: | |
x, y, lab = point | |
resized_x = int(round(x * scale_factor)) | |
resized_y = int(round(y * scale_factor)) | |
resized_point = (resized_x, resized_y, lab) | |
resized_points.append(resized_point) | |
return resized_points | |
def get_bounding_box(mask): | |
# Convert PIL Image to numpy array | |
mask = np.array(mask).astype(np.uint8) | |
# Take the first channel (R) of the mask | |
mask = mask[:,:,0] | |
# Get the indices of elements that are not zero | |
rows = np.any(mask, axis=0) | |
cols = np.any(mask, axis=1) | |
# Get the minimum and maximum indices where the elements are not zero | |
rmin, rmax = np.where(rows)[0][[0, -1]] | |
cmin, cmax = np.where(cols)[0][[0, -1]] | |
# Return as [xmin, ymin, xmax, ymax] | |
return [rmin, cmin, rmax, cmax] | |
def save_input_to_file(func): | |
def wrapper(self, *args, **kwargs): | |
# ๅๅปบไธๅ ๅซ self ็่พๅ ฅๅฏๆฌ | |
input_data = { | |
'args': args, | |
'kwargs': kwargs | |
} | |
# ๆง่กๅๅงๅฝๆฐ | |
result = func(self, *args, **kwargs) | |
# ๅฐ่พๅ ฅๆฐๆฎไฟๅญๅฐๆไปถ | |
with open('input_data.pkl', 'wb') as f: | |
pickle.dump(input_data, f) | |
# ่ฟๅ็ปๆ | |
return result | |
return wrapper | |