EditAnything / vlpart /vlpart.py
shgao's picture
update new demo
0c7479d
raw
history blame
7.1 kB
import logging
import numpy as np
import itertools
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn
from detectron2.config import configurable
from detectron2.data.detection_utils import convert_image_to_rgb
from detectron2.layers import move_device_like, batched_nms
from detectron2.structures import ImageList, Boxes, Instances, BitMasks, ROIMasks
from detectron2.modeling.backbone import Backbone, build_backbone
from detectron2.modeling.proposal_generator import build_proposal_generator
from detectron2.config import get_cfg
import clip
from vlpart.text_encoder import build_text_encoder
from vlpart.swintransformer import build_swinbase_fpn_backbone
from vlpart.vlpart_roi_heads import build_vlpart_roi_heads
def build_vlpart(checkpoint=None):
cfg = get_cfg()
cfg.merge_from_list(['MODEL.RPN.IN_FEATURES', ["p2", "p3", "p4", "p5", "p6"],
'MODEL.ROI_HEADS.IN_FEATURES', ["p2", "p3", "p4", "p5"],
'MODEL.ROI_BOX_CASCADE_HEAD.IOUS', [0.5, 0.6, 0.7],
'MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG', True,
'MODEL.ROI_BOX_HEAD.NAME', "FastRCNNConvFCHead",
'MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION', 7,
'MODEL.ROI_BOX_HEAD.NUM_FC', 2,
'MODEL.ANCHOR_GENERATOR.SIZES', [[32], [64], [128], [256], [512]],
'MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS', [[0.5, 1.0, 2.0]],
])
backbone = build_swinbase_fpn_backbone()
vlpart = VLPart(
backbone=backbone,
proposal_generator=build_proposal_generator(cfg, backbone.output_shape()),
roi_heads=build_vlpart_roi_heads(cfg, backbone.output_shape()),
)
vlpart.eval()
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
vlpart.load_state_dict(state_dict['model'], strict=False)
return vlpart
class VLPart(nn.Module):
def __init__(
self,
backbone: Backbone,
proposal_generator: nn.Module,
roi_heads: nn.Module,
):
super().__init__()
self.backbone = backbone
self.proposal_generator = proposal_generator
self.roi_heads = roi_heads
self.text_encoder = build_text_encoder(pretrain=True, visual_type='RN50')
self.register_buffer("pixel_mean",
torch.tensor([123.675, 116.280, 103.530]).view(-1, 1, 1), False)
self.register_buffer("pixel_std",
torch.tensor([58.395, 57.120, 57.375]).view(-1, 1, 1), False)
@property
def device(self):
return self.pixel_mean.device
def _move_to_current_device(self, x):
return move_device_like(x, self.pixel_mean)
def get_text_embeddings(self, vocabulary, prefix_prompt='a '):
vocabulary = vocabulary.split('.')
texts = [prefix_prompt + x.lower().replace(':', ' ') for x in vocabulary]
texts_aug = texts + ['background']
emb = self.text_encoder(texts_aug).permute(1, 0)
emb = F.normalize(emb, p=2, dim=0)
return emb
def inference(
self,
batched_inputs: List[Dict[str, torch.Tensor]],
do_postprocess: bool = True,
text_prompt: str = 'dog',
):
assert not self.training
images = self.preprocess_image(batched_inputs)
features = self.backbone(images.tensor)
proposals, _ = self.proposal_generator(images, features)
text_embed = self.get_text_embeddings(text_prompt)
results, _ = self.roi_heads(images, features, proposals, text_embed)
if do_postprocess:
assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
max_shape = images.tensor.shape[2:]
return VLPart._postprocess(results, batched_inputs, images.image_sizes, max_shape)
else:
return results
def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Normalize, pad and batch the input images.
"""
original_images = [self._move_to_current_device(x["image"]) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in original_images]
images = ImageList.from_tensors(
images,
self.backbone.size_divisibility,
padding_constraints=self.backbone.padding_constraints,
)
return images
@staticmethod
def _postprocess(instances, batched_inputs: List[Dict[str, torch.Tensor]], image_sizes, max_shape):
"""
Rescale the output instances to the target size.
"""
# note: private function; subject to changes
processed_results = []
for results_per_image, input_per_image, image_size in zip(
instances, batched_inputs, image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
r = custom_detector_postprocess(results_per_image, height, width, max_shape)
processed_results.append({"instances": r})
return processed_results
def custom_detector_postprocess(
results: Instances, output_height: int, output_width: int,
max_shape, mask_threshold: float = 0.5
):
"""
detector_postprocess with support on global_masks
"""
if isinstance(output_width, torch.Tensor):
# This shape might (but not necessarily) be tensors during tracing.
# Converts integer tensors to float temporaries to ensure true
# division is performed when computing scale_x and scale_y.
output_width_tmp = output_width.float()
output_height_tmp = output_height.float()
new_size = torch.stack([output_height, output_width])
else:
new_size = (output_height, output_width)
output_width_tmp = output_width
output_height_tmp = output_height
scale_x, scale_y = (
output_width_tmp / results.image_size[1],
output_height_tmp / results.image_size[0],
)
resized_h, resized_w = results.image_size
results = Instances(new_size, **results.get_fields())
if results.has("pred_boxes"):
output_boxes = results.pred_boxes
else:
output_boxes = None
assert output_boxes is not None, "Predictions must contain boxes!"
output_boxes.scale(scale_x, scale_y)
output_boxes.clip(results.image_size)
results = results[output_boxes.nonempty()]
if results.has("pred_masks"):
if isinstance(results.pred_masks, ROIMasks):
roi_masks = results.pred_masks
else:
# pred_masks is a tensor of shape (N, 1, M, M)
roi_masks = ROIMasks(results.pred_masks[:, 0, :, :])
results.pred_masks = roi_masks.to_bitmasks(
results.pred_boxes, output_height, output_width, mask_threshold
).tensor # TODO return ROIMasks/BitMask object in the future
return results