Spaces:
Runtime error
Runtime error
# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2 | |
from diffusers.utils import load_image | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
from torchvision.utils import save_image | |
from PIL import Image | |
from pytorch_lightning import seed_everything | |
import subprocess | |
from collections import OrderedDict | |
import cv2 | |
import einops | |
import gradio as gr | |
import numpy as np | |
import torch | |
import random | |
import os | |
from annotator.util import resize_image, HWC3 | |
def create_demo(): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
use_blip = True | |
use_gradio = True | |
# Diffusion init using diffusers. | |
# diffusers==0.14.0 required. | |
base_model_path = "stabilityai/stable-diffusion-2-1" | |
config_dict = OrderedDict([('SAM Pretrained(v0-1)', 'shgao/edit-anything-v0-1-1'), | |
('LAION Pretrained(v0-3)', 'shgao/edit-anything-v0-3'), | |
]) | |
def obtain_generation_model(controlnet_path): | |
controlnet = ControlNetModel.from_pretrained( | |
controlnet_path, torch_dtype=torch.float16) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
base_model_path, controlnet=controlnet, torch_dtype=torch.float16 | |
) | |
# speed up diffusion process with faster scheduler and memory optimization | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# remove following line if xformers is not installed | |
pipe.enable_xformers_memory_efficient_attention() | |
# pipe.enable_model_cpu_offload() # disable for now because of unknow bug in accelerate | |
pipe.to(device) | |
return pipe | |
global default_controlnet_path | |
default_controlnet_path = config_dict['LAION Pretrained(v0-3)'] | |
pipe = obtain_generation_model(default_controlnet_path) | |
# Segment-Anything init. | |
# pip install git+https://github.com/facebookresearch/segment-anything.git | |
try: | |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator | |
except ImportError: | |
print('segment_anything not installed') | |
result = subprocess.run(['pip', 'install', 'git+https://github.com/facebookresearch/segment-anything.git'], check=True) | |
print(f'Install segment_anything {result}') | |
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator | |
if not os.path.exists('./models/sam_vit_h_4b8939.pth'): | |
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth', '-P', 'models'], check=True) | |
print(f'Download sam_vit_h_4b8939.pth {result}') | |
sam_checkpoint = "models/sam_vit_h_4b8939.pth" | |
model_type = "default" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
sam.to(device=device) | |
mask_generator = SamAutomaticMaskGenerator(sam) | |
# BLIP2 init. | |
if use_blip: | |
# need the latest transformers | |
# pip install git+https://github.com/huggingface/transformers.git | |
from transformers import AutoProcessor, Blip2ForConditionalGeneration | |
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
blip_model = Blip2ForConditionalGeneration.from_pretrained( | |
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) | |
blip_model.to(device) | |
blip_model.to(device) | |
def get_blip2_text(image): | |
inputs = processor(image, return_tensors="pt").to(device, torch.float16) | |
generated_ids = blip_model.generate(**inputs, max_new_tokens=50) | |
generated_text = processor.batch_decode( | |
generated_ids, skip_special_tokens=True)[0].strip() | |
return generated_text | |
def show_anns(anns): | |
if len(anns) == 0: | |
return | |
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) | |
full_img = None | |
# for ann in sorted_anns: | |
for i in range(len(sorted_anns)): | |
ann = anns[i] | |
m = ann['segmentation'] | |
if full_img is None: | |
full_img = np.zeros((m.shape[0], m.shape[1], 3)) | |
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16) | |
map[m != 0] = i + 1 | |
color_mask = np.random.random((1, 3)).tolist()[0] | |
full_img[m != 0] = color_mask | |
full_img = full_img*255 | |
# anno encoding from https://github.com/LUSSeg/ImageNet-S | |
res = np.zeros((map.shape[0], map.shape[1], 3)) | |
res[:, :, 0] = map % 256 | |
res[:, :, 1] = map // 256 | |
res.astype(np.float32) | |
full_img = Image.fromarray(np.uint8(full_img)) | |
return full_img, res | |
def get_sam_control(image): | |
masks = mask_generator.generate(image) | |
full_img, res = show_anns(masks) | |
return full_img, res | |
def process(condition_model, input_image, enable_auto_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): | |
global default_controlnet_path | |
global pipe | |
print("To Use:", config_dict[condition_model], "Current:", default_controlnet_path) | |
if default_controlnet_path!=config_dict[condition_model]: | |
print("Change condition model to:", config_dict[condition_model]) | |
pipe = obtain_generation_model(config_dict[condition_model]) | |
default_controlnet_path = config_dict[condition_model] | |
with torch.no_grad(): | |
if use_blip and (enable_auto_prompt or len(prompt) == 0): | |
print("Generating text:") | |
blip2_prompt = get_blip2_text(input_image) | |
print("Generated text:", blip2_prompt) | |
if len(prompt) > 0: | |
prompt = blip2_prompt + ',' + prompt | |
else: | |
prompt = blip2_prompt | |
print("All text:", prompt) | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
print("Generating SAM seg:") | |
# the default SAM model is trained with 1024 size. | |
full_segmask, detected_map = get_sam_control( | |
resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map.astype(np.uint8)) | |
detected_map = cv2.resize( | |
detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy( | |
detected_map.copy()).float().cuda() | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
print("control.shape", control.shape) | |
generator = torch.manual_seed(seed) | |
x_samples = pipe( | |
prompt=[prompt + ', ' + a_prompt] * num_samples, | |
negative_prompt=[n_prompt] * num_samples, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=ddim_steps, | |
generator=generator, | |
height=H, | |
width=W, | |
image=control.type(torch.float16), | |
).images | |
results = [x_samples[i] for i in range(num_samples)] | |
return [full_segmask] + results, prompt | |
# disable gradio when not using GUI. | |
if not use_gradio: | |
# This part is not updated, it's just a example to use it without GUI. | |
condition_model = 'shgao/edit-anything-v0-1-1' | |
image_path = "images/sa_309398.jpg" | |
input_image = Image.open(image_path) | |
input_image = np.array(input_image, dtype=np.uint8) | |
prompt = "" | |
a_prompt = 'best quality, extremely detailed' | |
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' | |
num_samples = 4 | |
image_resolution = 512 | |
detect_resolution = 512 | |
ddim_steps = 100 | |
guess_mode = False | |
strength = 1.0 | |
scale = 9.0 | |
seed = 10086 | |
eta = 0.0 | |
outputs, full_text = process(condition_model, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, | |
detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta) | |
image_list = [] | |
input_image = resize_image(input_image, 512) | |
image_list.append(torch.tensor(input_image)) | |
for i in range(len(outputs)): | |
each = outputs[i] | |
if type(each) is not np.ndarray: | |
each = np.array(each, dtype=np.uint8) | |
each = resize_image(each, 512) | |
print(i, each.shape) | |
image_list.append(torch.tensor(each)) | |
image_list = torch.stack(image_list).permute(0, 3, 1, 2) | |
save_image(image_list, "sample.jpg", nrow=3, | |
normalize=True, value_range=(0, 255)) | |
else: | |
block = gr.Blocks() | |
with block as demo: | |
with gr.Row(): | |
gr.Markdown( | |
"## Generate Anything") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt (Optional)") | |
run_button = gr.Button(label="Run") | |
condition_model = gr.Dropdown(choices=list(config_dict.keys()), | |
value=list(config_dict.keys())[0], | |
label='Model', | |
multiselect=False) | |
num_samples = gr.Slider( | |
label="Images", minimum=1, maximum=12, value=1, step=1) | |
enable_auto_prompt = gr.Checkbox(label='Auto generated BLIP2 prompt', value=True) | |
with gr.Accordion("Advanced options", open=False): | |
image_resolution = gr.Slider( | |
label="Image Resolution", minimum=256, maximum=768, value=512, step=64) | |
strength = gr.Slider( | |
label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
detect_resolution = gr.Slider( | |
label="SAM Resolution", minimum=128, maximum=2048, value=1024, step=1) | |
ddim_steps = gr.Slider( | |
label="Steps", minimum=1, maximum=100, value=20, step=1) | |
scale = gr.Slider( | |
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, | |
maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox( | |
label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = gr.Textbox(label="Negative Prompt", | |
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') | |
with gr.Column(): | |
result_gallery = gr.Gallery( | |
label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') | |
result_text = gr.Text(label='BLIP2+Human Prompt Text') | |
ips = [condition_model, input_image, enable_auto_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, | |
detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery, result_text]) | |
return demo | |
if __name__ == '__main__': | |
demo = create_demo() | |
demo.queue().launch(server_name='0.0.0.0') | |