import numpy as np import cv2 import os import pickle annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts') def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def resize_image(input_image, resolution): H, W, C = input_image.shape H = float(H) W = float(W) k = float(resolution) / min(H, W) H *= k W *= k H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) return img def resize_points(clicked_points, original_shape, resolution): original_height, original_width, _ = original_shape original_height = float(original_height) original_width = float(original_width) scale_factor = float(resolution) / min(original_height, original_width) resized_points = [] for point in clicked_points: x, y, lab = point resized_x = int(round(x * scale_factor)) resized_y = int(round(y * scale_factor)) resized_point = (resized_x, resized_y, lab) resized_points.append(resized_point) return resized_points def get_bounding_box(mask): # Convert PIL Image to numpy array mask = np.array(mask).astype(np.uint8) # Take the first channel (R) of the mask mask = mask[:,:,0] # Get the indices of elements that are not zero rows = np.any(mask, axis=0) cols = np.any(mask, axis=1) # Get the minimum and maximum indices where the elements are not zero rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] # Return as [xmin, ymin, xmax, ymax] return [rmin, cmin, rmax, cmax] def save_input_to_file(func): def wrapper(self, *args, **kwargs): # 创建不包含 self 的输入副本 input_data = { 'args': args, 'kwargs': kwargs } # 执行原始函数 result = func(self, *args, **kwargs) # 将输入数据保存到文件 with open('input_data.pkl', 'wb') as f: pickle.dump(input_data, f) # 返回结果 return result return wrapper