import os import os.path as osp import shutil import copy import time import pprint import numpy as np import torch import matplotlib import argparse import json import yaml from easydict import EasyDict as edict from .model_zoo import get_model ############ # cfg_bank # ############ def cfg_solvef(cmd, root): if not isinstance(cmd, str): return cmd if cmd.find('SAME')==0: zoom = root p = cmd[len('SAME'):].strip('()').split('.') p = [pi.strip() for pi in p] for pi in p: try: pi = int(pi) except: pass try: zoom = zoom[pi] except: return cmd return cfg_solvef(zoom, root) if cmd.find('SEARCH')==0: zoom = root p = cmd[len('SEARCH'):].strip('()').split('.') p = [pi.strip() for pi in p] find = True # Depth first search for pi in p: try: pi = int(pi) except: pass try: zoom = zoom[pi] except: find = False break if find: return cfg_solvef(zoom, root) else: if isinstance(root, dict): for ri in root: rv = cfg_solvef(cmd, root[ri]) if rv != cmd: return rv if isinstance(root, list): for ri in root: rv = cfg_solvef(cmd, ri) if rv != cmd: return rv return cmd if cmd.find('MODEL')==0: goto = cmd[len('MODEL'):].strip('()') return model_cfg_bank()(goto) if cmd.find('DATASET')==0: goto = cmd[len('DATASET'):].strip('()') return dataset_cfg_bank()(goto) return cmd def cfg_solve(cfg, cfg_root): # The function solve cfg element such that # all sorrogate input are settled. # (i.e. SAME(***) ) if isinstance(cfg, list): for i in range(len(cfg)): if isinstance(cfg[i], (list, dict)): cfg[i] = cfg_solve(cfg[i], cfg_root) else: cfg[i] = cfg_solvef(cfg[i], cfg_root) if isinstance(cfg, dict): for k in cfg: if isinstance(cfg[k], (list, dict)): cfg[k] = cfg_solve(cfg[k], cfg_root) else: cfg[k] = cfg_solvef(cfg[k], cfg_root) return cfg class model_cfg_bank(object): def __init__(self): self.cfg_dir = osp.join('configs', 'model') self.cfg_bank = edict() def __call__(self, name): if name not in self.cfg_bank: cfg_path = self.get_yaml_path(name) with open(cfg_path, 'r') as f: cfg_new = yaml.load( f, Loader=yaml.FullLoader) cfg_new = edict(cfg_new) self.cfg_bank.update(cfg_new) cfg = self.cfg_bank[name] cfg.name = name if 'super_cfg' not in cfg: cfg = cfg_solve(cfg, cfg) self.cfg_bank[name] = cfg return copy.deepcopy(cfg) super_cfg = self.__call__(cfg.super_cfg) # unlike other field, # args will not be replaced but update. if 'args' in cfg: if 'args' in super_cfg: super_cfg.args.update(cfg.args) else: super_cfg.args = cfg.args cfg.pop('args') super_cfg.update(cfg) super_cfg.pop('super_cfg') cfg = super_cfg try: delete_args = cfg.pop('delete_args') except: delete_args = [] for dargs in delete_args: cfg.args.pop(dargs) cfg = cfg_solve(cfg, cfg) self.cfg_bank[name] = cfg return copy.deepcopy(cfg) def get_yaml_path(self, name): if name.find('openai_unet')==0: return osp.join( self.cfg_dir, 'openai_unet.yaml') elif (name.find('clip')==0) or (name.find('openclip')==0): return osp.join( self.cfg_dir, 'clip.yaml') elif name.find('vd')==0: return osp.join( self.cfg_dir, 'vd.yaml') elif name.find('optimus')==0: return osp.join( self.cfg_dir, 'optimus.yaml') elif name.find('autokl')==0: return osp.join( self.cfg_dir, 'autokl.yaml') else: raise ValueError class dataset_cfg_bank(object): def __init__(self): self.cfg_dir = osp.join('configs', 'dataset') self.cfg_bank = edict() def __call__(self, name): if name not in self.cfg_bank: cfg_path = self.get_yaml_path(name) with open(cfg_path, 'r') as f: cfg_new = yaml.load( f, Loader=yaml.FullLoader) cfg_new = edict(cfg_new) self.cfg_bank.update(cfg_new) cfg = self.cfg_bank[name] cfg.name = name if cfg.get('super_cfg', None) is None: cfg = cfg_solve(cfg, cfg) self.cfg_bank[name] = cfg return copy.deepcopy(cfg) super_cfg = self.__call__(cfg.super_cfg) super_cfg.update(cfg) cfg = super_cfg cfg.super_cfg = None try: delete = cfg.pop('delete') except: delete = [] for dargs in delete: cfg.pop(dargs) cfg = cfg_solve(cfg, cfg) self.cfg_bank[name] = cfg return copy.deepcopy(cfg) def get_yaml_path(self, name): if name.find('laion2b')==0: return osp.join( self.cfg_dir, 'laion2b.yaml') else: raise ValueError class experiment_cfg_bank(object): def __init__(self): self.cfg_dir = osp.join('configs', 'experiment') self.cfg_bank = edict() def __call__(self, name): if name not in self.cfg_bank: cfg_path = self.get_yaml_path(name) with open(cfg_path, 'r') as f: cfg = yaml.load( f, Loader=yaml.FullLoader) cfg = edict(cfg) cfg = cfg_solve(cfg, cfg) cfg = cfg_solve(cfg, cfg) # twice for SEARCH self.cfg_bank[name] = cfg return copy.deepcopy(cfg) def get_yaml_path(self, name): return osp.join( self.cfg_dir, name+'.yaml') def load_cfg_yaml(path): if osp.isfile(path): cfg_path = path elif osp.isfile(osp.join('configs', 'experiment', path)): cfg_path = osp.join('configs', 'experiment', path) elif osp.isfile(osp.join('configs', 'experiment', path+'.yaml')): cfg_path = osp.join('configs', 'experiment', path+'.yaml') else: assert False, 'No such config!' with open(cfg_path, 'r') as f: cfg = yaml.load(f, Loader=yaml.FullLoader) cfg = edict(cfg) cfg = cfg_solve(cfg, cfg) cfg = cfg_solve(cfg, cfg) return cfg ############## # cfg_helper # ############## def get_experiment_id(ref=None): if ref is None: time.sleep(0.5) return int(time.time()*100) else: try: return int(ref) except: pass _, ref = osp.split(ref) ref = ref.split('_')[0] try: return int(ref) except: assert False, 'Invalid experiment ID!' def record_resume_cfg(path): cnt = 0 while True: if osp.exists(path+'.{:04d}'.format(cnt)): cnt += 1 continue shutil.copyfile(path, path+'.{:04d}'.format(cnt)) break def get_command_line_args(): parser = argparse.ArgumentParser() parser.add_argument('--debug', action='store_true', default=False) parser.add_argument('--config', type=str) parser.add_argument('--gpu', nargs='+', type=int) parser.add_argument('--node_rank', type=int) parser.add_argument('--node_list', nargs='+', type=str) parser.add_argument('--nodes', type=int) parser.add_argument('--addr', type=str, default='127.0.0.1') parser.add_argument('--port', type=int, default=11233) parser.add_argument('--signature', nargs='+', type=str) parser.add_argument('--seed', type=int) parser.add_argument('--eval', type=str) parser.add_argument('--eval_subdir', type=str) parser.add_argument('--pretrained', type=str) parser.add_argument('--resume_dir', type=str) parser.add_argument('--resume_step', type=int) parser.add_argument('--resume_weight', type=str) args = parser.parse_args() # Special handling the resume if args.resume_dir is not None: cfg = edict() cfg.env = edict() cfg.env.debug = args.debug cfg.env.resume = edict() cfg.env.resume.dir = args.resume_dir cfg.env.resume.step = args.resume_step cfg.env.resume.weight = args.resume_weight return cfg cfg = load_cfg_yaml(args.config) cfg.env.debug = args.debug cfg.env.gpu_device = [0] if args.gpu is None else list(args.gpu) cfg.env.master_addr = args.addr cfg.env.master_port = args.port cfg.env.dist_url = 'tcp://{}:{}'.format(args.addr, args.port) if args.node_list is None: cfg.env.node_rank = 0 if args.node_rank is None else args.node_rank cfg.env.nodes = 1 if args.nodes is None else args.nodes else: import socket hostname = socket.gethostname() assert cfg.env.master_addr == args.node_list[0] cfg.env.node_rank = args.node_list.index(hostname) cfg.env.nodes = len(args.node_list) cfg.env.node_list = args.node_list istrain = False if args.eval is not None else True isdebug = cfg.env.debug if istrain: if isdebug: cfg.env.experiment_id = 999999999999 cfg.train.signature = ['debug'] else: cfg.env.experiment_id = get_experiment_id() if args.signature is not None: cfg.train.signature = args.signature else: if 'train' in cfg: cfg.pop('train') cfg.env.experiment_id = get_experiment_id(args.eval) if args.signature is not None: cfg.eval.signature = args.signature if isdebug and (args.eval is None): cfg.env.experiment_id = 999999999999 cfg.eval.signature = ['debug'] if args.eval_subdir is not None: if isdebug: cfg.eval.eval_subdir = 'debug' else: cfg.eval.eval_subdir = args.eval_subdir if args.pretrained is not None: cfg.eval.pretrained = args.pretrained # The override pretrained over the setting in cfg.model if args.seed is not None: cfg.env.rnd_seed = args.seed return cfg def cfg_initiates(cfg): cfge = cfg.env isdebug = cfge.debug isresume = 'resume' in cfge istrain = 'train' in cfg haseval = 'eval' in cfg cfgt = cfg.train if istrain else None cfgv = cfg.eval if haseval else None ############################### # get some environment params # ############################### cfge.computer = os.uname() cfge.torch_version = str(torch.__version__) ########## # resume # ########## if isresume: resume_cfg_path = osp.join(cfge.resume.dir, 'config.yaml') record_resume_cfg(resume_cfg_path) with open(resume_cfg_path, 'r') as f: cfg_resume = yaml.load(f, Loader=yaml.FullLoader) cfg_resume = edict(cfg_resume) cfg_resume.env.update(cfge) cfg = cfg_resume cfge = cfg.env log_file = cfg.train.log_file print('') print('##########') print('# resume #') print('##########') print('') with open(log_file, 'a') as f: print('', file=f) print('##########', file=f) print('# resume #', file=f) print('##########', file=f) print('', file=f) pprint.pprint(cfg) with open(log_file, 'a') as f: pprint.pprint(cfg, f) #################### # node distributed # #################### if cfg.env.master_addr!='127.0.0.1': os.environ['MASTER_ADDR'] = cfge.master_addr os.environ['MASTER_PORT'] = '{}'.format(cfge.master_port) if cfg.env.dist_backend=='nccl': os.environ['NCCL_SOCKET_FAMILY'] = 'AF_INET' if cfg.env.dist_backend=='gloo': os.environ['GLOO_SOCKET_FAMILY'] = 'AF_INET' ####################### # cuda visible device # ####################### os.environ["CUDA_VISIBLE_DEVICES"] = ','.join( [str(gid) for gid in cfge.gpu_device]) ##################### # return resume cfg # ##################### if isresume: return cfg ############################################# # some misc setting that not need in resume # ############################################# cfgm = cfg.model cfge.gpu_count = len(cfge.gpu_device) ########################################## # align batch size and num worker config # ########################################## gpu_n = cfge.gpu_count * cfge.nodes def align_batch_size(bs, bs_per_gpu): assert (bs is not None) or (bs_per_gpu is not None) bs = bs_per_gpu * gpu_n if bs is None else bs bs_per_gpu = bs // gpu_n if bs_per_gpu is None else bs_per_gpu assert (bs == bs_per_gpu * gpu_n) return bs, bs_per_gpu if istrain: cfgt.batch_size, cfgt.batch_size_per_gpu = \ align_batch_size(cfgt.batch_size, cfgt.batch_size_per_gpu) cfgt.dataset_num_workers, cfgt.dataset_num_workers_per_gpu = \ align_batch_size(cfgt.dataset_num_workers, cfgt.dataset_num_workers_per_gpu) if haseval: cfgv.batch_size, cfgv.batch_size_per_gpu = \ align_batch_size(cfgv.batch_size, cfgv.batch_size_per_gpu) cfgv.dataset_num_workers, cfgv.dataset_num_workers_per_gpu = \ align_batch_size(cfgv.dataset_num_workers, cfgv.dataset_num_workers_per_gpu) ################## # create log dir # ################## if istrain: if not isdebug: sig = cfgt.get('signature', []) sig = sig + ['s{}'.format(cfge.rnd_seed)] else: sig = ['debug'] log_dir = [ cfge.log_root_dir, '{}_{}'.format(cfgm.symbol, cfgt.dataset.symbol), '_'.join([str(cfge.experiment_id)] + sig) ] log_dir = osp.join(*log_dir) log_file = osp.join(log_dir, 'train.log') if not osp.exists(log_file): os.makedirs(osp.dirname(log_file)) cfgt.log_dir = log_dir cfgt.log_file = log_file if haseval: cfgv.log_dir = log_dir cfgv.log_file = log_file else: model_symbol = cfgm.symbol if cfgv.get('dataset', None) is None: dataset_symbol = 'nodataset' else: dataset_symbol = cfgv.dataset.symbol log_dir = osp.join(cfge.log_root_dir, '{}_{}'.format(model_symbol, dataset_symbol)) exp_dir = search_experiment_folder(log_dir, cfge.experiment_id) if exp_dir is None: if not isdebug: sig = cfgv.get('signature', []) + ['evalonly'] else: sig = ['debug'] exp_dir = '_'.join([str(cfge.experiment_id)] + sig) eval_subdir = cfgv.get('eval_subdir', None) # override subdir in debug mode (if eval_subdir is set) eval_subdir = 'debug' if (eval_subdir is not None) and isdebug else eval_subdir if eval_subdir is not None: log_dir = osp.join(log_dir, exp_dir, eval_subdir) else: log_dir = osp.join(log_dir, exp_dir) disable_log_override = cfgv.get('disable_log_override', False) if osp.isdir(log_dir): if disable_log_override: assert False, 'Override an exsited log_dir is disabled at [{}]'.format(log_dir) else: os.makedirs(log_dir) log_file = osp.join(log_dir, 'eval.log') cfgv.log_dir = log_dir cfgv.log_file = log_file ###################### # print and save cfg # ###################### pprint.pprint(cfg) if cfge.node_rank==0: with open(log_file, 'w') as f: pprint.pprint(cfg, f) with open(osp.join(log_dir, 'config.yaml'), 'w') as f: yaml.dump(edict_2_dict(cfg), f) else: with open(osp.join(log_dir, 'config.yaml.{}'.format(cfge.node_rank)), 'w') as f: yaml.dump(edict_2_dict(cfg), f) ############# # save code # ############# save_code = False if istrain: save_code = cfgt.get('save_code', False) elif haseval: save_code = cfgv.get('save_code', False) save_code = save_code and (cfge.node_rank==0) if save_code: codedir = osp.join(log_dir, 'code') if osp.exists(codedir): shutil.rmtree(codedir) for d in ['configs', 'lib']: fromcodedir = d tocodedir = osp.join(codedir, d) shutil.copytree( fromcodedir, tocodedir, ignore=shutil.ignore_patterns( '*__pycache__*', '*build*')) for codei in os.listdir('.'): if osp.splitext(codei)[1] == 'py': shutil.copy(codei, codedir) ####################### # set matplotlib mode # ####################### if 'matplotlib_mode' in cfge: try: matplotlib.use(cfge.matplotlib_mode) except: print('Warning: matplotlib mode [{}] failed to be set!'.format(cfge.matplotlib_mode)) return cfg def edict_2_dict(x): if isinstance(x, dict): xnew = {} for k in x: xnew[k] = edict_2_dict(x[k]) return xnew elif isinstance(x, list): xnew = [] for i in range(len(x)): xnew.append( edict_2_dict(x[i]) ) return xnew else: return x def search_experiment_folder(root, exid): target = None for fi in os.listdir(root): if not osp.isdir(osp.join(root, fi)): continue if int(fi.split('_')[0]) == exid: if target is not None: return None # duplicated elif target is None: target = fi return target