|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
try: |
|
import torch.distributed.nn |
|
from torch import distributed as dist |
|
|
|
has_distributed = True |
|
except ImportError: |
|
has_distributed = False |
|
|
|
try: |
|
import horovod.torch as hvd |
|
except ImportError: |
|
hvd = None |
|
|
|
|
|
def gather_features( |
|
image_features, |
|
text_features, |
|
local_loss=False, |
|
gather_with_grad=False, |
|
rank=0, |
|
world_size=1, |
|
use_horovod=False |
|
): |
|
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.' |
|
if use_horovod: |
|
assert hvd is not None, 'Please install horovod' |
|
if gather_with_grad: |
|
all_image_features = hvd.allgather(image_features) |
|
all_text_features = hvd.allgather(text_features) |
|
else: |
|
with torch.no_grad(): |
|
all_image_features = hvd.allgather(image_features) |
|
all_text_features = hvd.allgather(text_features) |
|
if not local_loss: |
|
|
|
gathered_image_features = list(all_image_features.chunk(world_size, dim=0)) |
|
gathered_text_features = list(all_text_features.chunk(world_size, dim=0)) |
|
gathered_image_features[rank] = image_features |
|
gathered_text_features[rank] = text_features |
|
all_image_features = torch.cat(gathered_image_features, dim=0) |
|
all_text_features = torch.cat(gathered_text_features, dim=0) |
|
else: |
|
|
|
if gather_with_grad: |
|
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0) |
|
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0) |
|
else: |
|
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)] |
|
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)] |
|
dist.all_gather(gathered_image_features, image_features) |
|
dist.all_gather(gathered_text_features, text_features) |
|
if not local_loss: |
|
|
|
gathered_image_features[rank] = image_features |
|
gathered_text_features[rank] = text_features |
|
all_image_features = torch.cat(gathered_image_features, dim=0) |
|
all_text_features = torch.cat(gathered_text_features, dim=0) |
|
|
|
return all_image_features, all_text_features |
|
|
|
|
|
class ClipLoss(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
local_loss=False, |
|
gather_with_grad=False, |
|
cache_labels=False, |
|
rank=0, |
|
world_size=1, |
|
use_horovod=False, |
|
): |
|
super().__init__() |
|
self.local_loss = local_loss |
|
self.gather_with_grad = gather_with_grad |
|
self.cache_labels = cache_labels |
|
self.rank = rank |
|
self.world_size = world_size |
|
self.use_horovod = use_horovod |
|
|
|
|
|
self.prev_num_logits = 0 |
|
self.labels = {} |
|
|
|
def get_ground_truth(self, device, num_logits) -> torch.Tensor: |
|
|
|
if self.prev_num_logits != num_logits or device not in self.labels: |
|
labels = torch.arange(num_logits, device=device, dtype=torch.long) |
|
if self.world_size > 1 and self.local_loss: |
|
labels = labels + num_logits * self.rank |
|
if self.cache_labels: |
|
self.labels[device] = labels |
|
self.prev_num_logits = num_logits |
|
else: |
|
labels = self.labels[device] |
|
return labels |
|
|
|
def get_logits(self, image_features, text_features, logit_scale): |
|
if self.world_size > 1: |
|
all_image_features, all_text_features = gather_features( |
|
image_features, text_features, |
|
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod) |
|
|
|
if self.local_loss: |
|
logits_per_image = logit_scale * image_features @ all_text_features.T |
|
logits_per_text = logit_scale * text_features @ all_image_features.T |
|
else: |
|
logits_per_image = logit_scale * all_image_features @ all_text_features.T |
|
logits_per_text = logits_per_image.T |
|
else: |
|
logits_per_image = logit_scale * image_features @ text_features.T |
|
logits_per_text = logit_scale * text_features @ image_features.T |
|
|
|
return logits_per_image, logits_per_text |
|
|
|
def forward(self, image_features, text_features, logit_scale, output_dict=False): |
|
device = image_features.device |
|
logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale) |
|
|
|
labels = self.get_ground_truth(device, logits_per_image.shape[0]) |
|
|
|
total_loss = ( |
|
F.cross_entropy(logits_per_image, labels) + |
|
F.cross_entropy(logits_per_text, labels) |
|
) / 2 |
|
|
|
return {"contrastive_loss": total_loss} if output_dict else total_loss |
|
|
|
|
|
class CoCaLoss(ClipLoss): |
|
def __init__( |
|
self, |
|
caption_loss_weight, |
|
clip_loss_weight, |
|
pad_id=0, |
|
local_loss=False, |
|
gather_with_grad=False, |
|
cache_labels=False, |
|
rank=0, |
|
world_size=1, |
|
use_horovod=False, |
|
): |
|
super().__init__( |
|
local_loss=local_loss, |
|
gather_with_grad=gather_with_grad, |
|
cache_labels=cache_labels, |
|
rank=rank, |
|
world_size=world_size, |
|
use_horovod=use_horovod |
|
) |
|
|
|
self.clip_loss_weight = clip_loss_weight |
|
self.caption_loss_weight = caption_loss_weight |
|
self.caption_loss = nn.CrossEntropyLoss(ignore_index=pad_id) |
|
|
|
def forward(self, image_features, text_features, logits, labels, logit_scale, output_dict=False): |
|
|
|
clip_loss = torch.tensor(0) |
|
|
|
if self.clip_loss_weight: |
|
clip_loss = super().forward(image_features, text_features, logit_scale) |
|
clip_loss = self.clip_loss_weight * clip_loss |
|
|
|
caption_loss = self.caption_loss( |
|
logits.permute(0, 2, 1), |
|
labels, |
|
) |
|
caption_loss = caption_loss * self.caption_loss_weight |
|
|
|
if output_dict: |
|
return {"contrastive_loss": clip_loss, "caption_loss": caption_loss} |
|
|
|
return clip_loss, caption_loss |
|
|
|
|
|
class DistillClipLoss(ClipLoss): |
|
|
|
def dist_loss(self, teacher_logits, student_logits): |
|
return -(teacher_logits.softmax(dim=1) * student_logits.log_softmax(dim=1)).sum(dim=1).mean(dim=0) |
|
|
|
def forward( |
|
self, |
|
image_features, |
|
text_features, |
|
logit_scale, |
|
dist_image_features, |
|
dist_text_features, |
|
dist_logit_scale, |
|
output_dict=False, |
|
): |
|
logits_per_image, logits_per_text = \ |
|
self.get_logits(image_features, text_features, logit_scale) |
|
|
|
dist_logits_per_image, dist_logits_per_text = \ |
|
self.get_logits(dist_image_features, dist_text_features, dist_logit_scale) |
|
|
|
labels = self.get_ground_truth(image_features.device, logits_per_image.shape[0]) |
|
|
|
contrastive_loss = ( |
|
F.cross_entropy(logits_per_image, labels) + |
|
F.cross_entropy(logits_per_text, labels) |
|
) / 2 |
|
|
|
distill_loss = ( |
|
self.dist_loss(dist_logits_per_image, logits_per_image) + |
|
self.dist_loss(dist_logits_per_text, logits_per_text) |
|
) / 2 |
|
|
|
if output_dict: |
|
return {"contrastive_loss": contrastive_loss, "distill_loss": distill_loss} |
|
|
|
return contrastive_loss, distill_loss |
|
|