Spaces:
Running
Running
added app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Iterable
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.vectorstores import Qdrant
|
6 |
+
from qdrant_client import QdrantClient
|
7 |
+
from qdrant_client.http.models import Filter, FieldCondition, MatchValue
|
8 |
+
from config import DB_CONFIG
|
9 |
+
|
10 |
+
|
11 |
+
@st.cache_resource
|
12 |
+
def load_embeddings():
|
13 |
+
model_name = "intfloat/multilingual-e5-large"
|
14 |
+
model_kwargs = {"device": "cuda:0" if torch.cuda.is_available() else "cpu"}
|
15 |
+
encode_kwargs = {"normalize_embeddings": False}
|
16 |
+
embeddings = HuggingFaceEmbeddings(
|
17 |
+
model_name=model_name,
|
18 |
+
model_kwargs=model_kwargs,
|
19 |
+
encode_kwargs=encode_kwargs,
|
20 |
+
)
|
21 |
+
return embeddings
|
22 |
+
|
23 |
+
|
24 |
+
EMBEDDINGS = load_embeddings()
|
25 |
+
|
26 |
+
|
27 |
+
def make_filter_obj(options: list[dict[str]]):
|
28 |
+
must = []
|
29 |
+
for option in options:
|
30 |
+
must.append(
|
31 |
+
FieldCondition(key=option["key"], match=MatchValue(value=option["value"]))
|
32 |
+
)
|
33 |
+
filter = Filter(must=must)
|
34 |
+
return filter
|
35 |
+
|
36 |
+
|
37 |
+
def get_similay(query: str, filter: Filter):
|
38 |
+
db_url, db_api_key, db_collection_name = DB_CONFIG
|
39 |
+
client = QdrantClient(url=db_url, api_key=db_api_key)
|
40 |
+
db = Qdrant(
|
41 |
+
client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
|
42 |
+
)
|
43 |
+
docs = db.similarity_search_with_score(
|
44 |
+
query,
|
45 |
+
k=20,
|
46 |
+
filter=filter,
|
47 |
+
)
|
48 |
+
return docs
|
49 |
+
|
50 |
+
|
51 |
+
def main(
|
52 |
+
query: str,
|
53 |
+
repo_name: str,
|
54 |
+
) -> Iterable[tuple[str, tuple[str, str]]]:
|
55 |
+
options = [{"key": "metadata.repo_name", "value": repo_name}]
|
56 |
+
filter = make_filter_obj(options=options)
|
57 |
+
docs = get_similay(query, filter)
|
58 |
+
for doc, score in docs:
|
59 |
+
text = doc.page_content
|
60 |
+
metadata = doc.metadata
|
61 |
+
# print(metadata)
|
62 |
+
title = metadata.get("title")
|
63 |
+
url = metadata.get("url")
|
64 |
+
id_ = metadata.get("id")
|
65 |
+
is_comment = metadata.get("type_") == "comment"
|
66 |
+
yield title, url, id_, text, score, is_comment
|
67 |
+
|
68 |
+
|
69 |
+
with st.form("my_form"):
|
70 |
+
st.title("GitHub Issue Search")
|
71 |
+
query = st.text_input(label="query")
|
72 |
+
repo_name = st.radio(
|
73 |
+
options=["cocoa", "plone", "volto", "plone.restapi"], label="Repo name"
|
74 |
+
)
|
75 |
+
|
76 |
+
submitted = st.form_submit_button("Submit")
|
77 |
+
if submitted:
|
78 |
+
st.divider()
|
79 |
+
st.header("Search Results")
|
80 |
+
st.divider()
|
81 |
+
with st.spinner("Searching..."):
|
82 |
+
results = main(query, repo_name)
|
83 |
+
for title, url, id_, text, score, is_comment in results:
|
84 |
+
with st.container():
|
85 |
+
if not is_comment:
|
86 |
+
st.subheader(f"#{id_} - {title}")
|
87 |
+
else:
|
88 |
+
st.subheader(f"comment with {title}")
|
89 |
+
st.write(url)
|
90 |
+
st.write(text)
|
91 |
+
st.write(score)
|
92 |
+
# st.markdown(html, unsafe_allow_html=True)
|
93 |
+
st.divider()
|