File size: 25,656 Bytes
33b10b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import streamlit as st
from openai import OpenAI
import json, os, httpx, asyncio
import requests, time
#from data_extractor import extract_data
#from rda import find_nutrition
from typing import Dict, Any
#from calc_cosine_similarity import  find_relevant_file_paths
import pickle
from calc_consumption_context import get_consumption_context
import httpx
from tenacity import retry, stop_after_attempt, wait_exponential

#Used the @st.cache_resource decorator on this function. 
#This Streamlit decorator ensures that the function is only executed once and its result (the OpenAI client) is cached. 
#Subsequent calls to this function will return the cached client, avoiding unnecessary recreation.

@st.cache_resource
def get_openai_client():
    #Enable debug mode for testing only
    return OpenAI(api_key=os.getenv("OPENAI_API_KEY"))


#@st.cache_resource
#def get_backend_urls():
#    data_extractor_url = "https://data-extractor-67qj89pa0-sonikas-projects-9936eaad.vercel.app/"
#    return data_extractor_url

client = get_openai_client()
render_host_url = "https://foodlabelanalyzer-api-2.onrender.com"

@st.cache_resource
def create_assistant_and_embeddings():

    global client
    
    assistant1 = client.beta.assistants.create(
      name="Processing Level",
      instructions="You are an expert dietician. Use your knowledge base to answer questions about the processing level of food product.",
      model="gpt-4o",
      tools=[{"type": "file_search"}],
      temperature=0,
      top_p = 0.85
      )

      # Create a vector store
    vector_store1 = client.beta.vector_stores.create(name="Processing Level Vec")
    
    # Ready the files for upload to OpenAI
    file_paths = ["./Processing_Level.docx"]
    file_streams = [open(path, "rb") for path in file_paths]
    
    # Use the upload and poll SDK helper to upload the files, add them to the vector store,
    # and poll the status of the file batch for completion.
    file_batch1 = client.beta.vector_stores.file_batches.upload_and_poll(
      vector_store_id=vector_store1.id, files=file_streams
    )
    
    # You can print the status and the file counts of the batch to see the result of this operation.
    print(file_batch1.status)
    print(file_batch1.file_counts)

    #Processing Level
    assistant1 = client.beta.assistants.update(
      assistant_id=assistant1.id,
      tool_resources={"file_search": {"vector_store_ids": [vector_store1.id]}},
    )

    return assistant1
    
assistant_p = create_assistant_and_embeddings()

async def extract_data_from_product_image(image_links):
    global render_host_url
    print(f"DEBUG - image links are {image_links}")
    async with httpx.AsyncClient() as client_api:
        try:
            response = await client_api.post(
                f"{render_host_url}/data_extractor/api/extract-data", 
                json = { "image_links" : image_links },
                headers = {
                "Content-Type": "application/json"
                },
                timeout=50.0
            )
            response.raise_for_status()  # Raise an exception for HTTP errors
            return response.json()
        except httpx.RequestError as e:
            print(f"Request error occurred: {e.request.url} - {e}")
            return None
        except httpx.HTTPStatusError as e:
            print(f"HTTP error occurred: {e.response.status_code} - {e.response.text}")
            return None
        except Exception as e:
            print(f"An unexpected error occurred: {e}")
            return None
            
#def get_product_list(product_name_by_user):
#    response = find_product(product_name_by_user)
#    return response

async def get_product_list(product_name_by_user):
    global render_host_url
    print("calling find-product api")
    async with httpx.AsyncClient() as client_api:
        try:
            response = await client_api.get(
                f"{render_host_url}/data_extractor/api/find-product", 
                params={"product_name": product_name_by_user},
                timeout=httpx.Timeout(
                    connect=100.0,
                    read=500.0,
                    pool=50.0,
                    write=10.0
                )
            )
            response.raise_for_status()
            return response.json()
        except httpx.RequestError as e:
            print(f"An error occurred: {e}")
            return None

async def get_product(product_name):
    global render_host_url
    print("calling get-product api")
    async with httpx.AsyncClient() as client_api:
        try:
            response = await client_api.get(
                f"{render_host_url}/data_extractor/api/get-product", 
                params={"product_name": product_name},
                timeout=httpx.Timeout(
                    connect=300.0,
                    read=700.0,
                    pool=50.0,
                    write=10.0
                )
            )
            response.raise_for_status()
            return response.json()
        except httpx.TimeoutException as e:
            print(f"The request timed out : {e}")
            return None
        except httpx.RequestError as e:
            print(f"An error occurred: {e}")
            return None 
    
async def analyze_nutrition_using_icmr_rda(product_info_from_db):
    global render_host_url
    print(f"Calling analyze_nutrition_icmr_rda api - product_info_from_db : {type(product_info_from_db)}")
    async with httpx.AsyncClient() as client_api:
        try:
            response = await client_api.post(
                f"{render_host_url}/nutrient_analyzer/api/nutrient-analysis", 
                json={"product_info_from_db": product_info_from_db},
                timeout=httpx.Timeout(
                    connect=50.0,
                    read=400.0,
                    write=10.0,
                    pool=10.0
                ),
                headers={
                    "Content-Type": "application/json"
                }
            )
            response.raise_for_status()
            # Add more detailed logging
            response_json = response.json()
            print(f"Full response JSON: {response_json}")
            
            # Validate response structure
            if not response_json:
                print("Received empty JSON response")
                return None
            
            return response_json
        except httpx.TimeoutException as e:
            print(f"Timeout error: {e}")
            raise  # Re-raise to propagate the error
        
        except httpx.RequestError as e:
            print(f"Request error: {e}")
            raise  # Re-raise to propagate the error
        
        except Exception as e:
            print(f"Unexpected error in API call: {e}")
            raise

async def generate_final_analysis(
    brand_name: str,
    product_name: str,
    nutritional_level: str,
    processing_level: str,
    all_ingredient_analysis: str,
    claims_analysis: str,
    refs: list
):
    print(f"Calling cumulative-analysis API with refs : {refs}")
    global render_host_url
    # Create a client with a longer timeout (120 seconds)
    async with httpx.AsyncClient() as client_api:
        try:
            # Convert the refs list to a JSON string
            print(f"sending refs to API for product {product_name} by {brand_name} - {refs}")
            
            response = await client_api.post(
                f"{render_host_url}/cumulative_analysis/api/cumulative-analysis",
                json={
                    "brand_name": brand_name,
                    "product_name": product_name,
                    "nutritional_level": nutritional_level,
                    "processing_level": processing_level,
                    "all_ingredient_analysis": all_ingredient_analysis,
                    "claims_analysis": claims_analysis,
                    "refs": refs
                },
                headers={
                    "Content-Type": "application/json"
                },
                timeout=httpx.Timeout(
                    connect=10.0,
                    read=800.0,
                    write=10.0,
                    pool=10.0
                )
            )
            response.raise_for_status()
            formatted_response = response.text.replace('\\n', '\n')
            return formatted_response
            
        except httpx.TimeoutException as e:
            print(f"Request timed out: {e}")
            return None
        except Exception as e:
            print(f"An error occurred: {e}")
            return None


async def analyze_processing_level_and_ingredients(product_info_from_db, assistant_p_id, start_time):
    print("calling processing level and ingredient_analysis api")
    print(f"assistant_p_id is of type {type(assistant_p_id)}")

    global render_host_url
    request_payload = {
        "product_info_from_db": product_info_from_db,
        "assistant_p_id": assistant_p_id
    }
    
    try:
        #with httpx.Client() as client_api
        print(f"DEBUG - Inside Ingredient analysis API 1 {time.time() - start_time} sec")
        async with httpx.AsyncClient() as client_api:
            response = await client_api.post(
                f"{render_host_url}/ingredient_analysis/api/processing_level-ingredient-analysis", 
                json=request_payload,
                headers={
                    "Content-Type": "application/json"
                },
                timeout=httpx.Timeout(
                    connect=5.0,
                    read=600.0,
                    write=10.0,
                    pool=10.0
                )
            )
            print(f"DEBUG - Inside Ingredient analysis API 2 {time.time() - start_time} sec")
            response.raise_for_status()
            return response.json()
    except httpx.TimeoutException as e:
            print(f"The request timed out : {e}")
            return None
    except (httpx.RequestError, httpx.HTTPStatusError) as e:
            print(f"API call error: {e}")
            return None

async def analyze_claims(product_info_from_db):
    print("calling processing level and ingredient_analysis api")
    global render_host_url
    request_payload = {
        "product_info_from_db": product_info_from_db
    }
    
    try:
        async with httpx.AsyncClient() as client_api:
            response = await client_api.post(
                f"{render_host_url}/claims_analysis/api/claims-analysis", 
                json=request_payload,
                headers={
                    "Content-Type": "application/json"
                },
                timeout=httpx.Timeout(
                    connect=10.0,
                    read=150.0,
                    write=10.0,
                    pool=10.0
                )
            )
            response.raise_for_status()
            return response.json()
    
    except (httpx.RequestError, httpx.HTTPStatusError) as e:
        print(f"API call error: {e}")
        return None 
  
async def analyze_product(product_info_from_db):
    global assistant_p
    
    if product_info_from_db:
        brand_name = product_info_from_db.get("brandName", "")
        product_name = product_info_from_db.get("productName", "")
        start_time = time.time()

        # Verify each function is async and returns a coroutine
        coroutines = []
        
        # Ensure each function is an async function and returns a coroutine
        nutrition_coro = analyze_nutrition_using_icmr_rda(product_info_from_db)
        processing_coro = analyze_processing_level_and_ingredients(product_info_from_db, assistant_p.id, start_time)
        
        coroutines.append(nutrition_coro)
        coroutines.append(processing_coro)

        # Conditionally add claims analysis
        if product_info_from_db.get("claims"):
            claims_coro = analyze_claims(product_info_from_db)
            coroutines.append(claims_coro)

        # Debug: Print coroutine types to verify
        print("Coroutines:", [type(coro) for coro in coroutines])

        # Parallel API calls
        results = await asyncio.gather(*coroutines)

        # Unpack results based on the number of coroutines
        nutritional_level_json = results[0]
        refs_ingredient_analysis_json = results[1]
        claims_analysis_json = results[2] if len(results) > 2 else None
        

        # Extract data from API results
        nutritional_level = nutritional_level_json["nutrition_analysis"]
        refs = refs_ingredient_analysis_json["refs"]
        all_ingredient_analysis = refs_ingredient_analysis_json["all_ingredient_analysis"]
        processing_level = refs_ingredient_analysis_json["processing_level"]
        claims_analysis = claims_analysis_json["claims_analysis"] if claims_analysis_json else ""

        # Generate final analysis
        final_analysis = await generate_final_analysis(
            brand_name, 
            product_name, 
            nutritional_level, 
            processing_level, 
            all_ingredient_analysis, 
            claims_analysis, 
            refs
        )

        print(f"DEBUG - Cumulative analysis finished in {time.time() - start_time} seconds")
        return final_analysis
        
# Streamlit app
# Initialize session state
if 'messages' not in st.session_state:
    st.session_state.messages = []

async def chatbot_response(image_urls_str, product_name_by_user, extract_info = True):
    # Process the user input and generate a response
    processing_level = ""
    harmful_ingredient_analysis = ""
    claims_analysis = ""
    image_urls = []
    if product_name_by_user != "":
        similar_product_list_json = await get_product_list(product_name_by_user)
        
        if similar_product_list_json and extract_info == False:
            with st.spinner("Fetching product information from our database... This may take a moment."):
                print(f"similar_product_list_json : {similar_product_list_json}")
                if 'error' not in similar_product_list_json.keys():
                    similar_product_list = similar_product_list_json['products']
                    return similar_product_list, "Product list found from our database"
                else:
                    return [], "Product list not found"
            
        elif extract_info == True:
            with st.spinner("Analyzing product using data from 3,000+ peer-reviewed journal papers..."):
                st.caption("This may take a few minutes")
                
                product_info_raw = await get_product(product_name_by_user)
                print(f"DEBUG product_info_raw from name: {type(product_info_raw)} {product_info_raw}")
                if not product_info_raw:
                    return [], "product not found because product information in the db is corrupt"
                if 'error' not in product_info_raw.keys():
                    final_analysis = await analyze_product(product_info_raw)
                    return [], final_analysis
                else:
                    return [], f"Product information could not be extracted from our database because of {product_info_raw['error']}"
                
        else:
            return [], "Product not found in our database."
                
    elif "http:/" in image_urls_str.lower() or "https:/" in image_urls_str.lower():
        # Extract image URL from user input
        if "," not in image_urls_str:
            image_urls.append(image_urls_str)
        else:
            for url in image_urls_str.split(","):
                if "http:/" in url.lower() or "https:/" in url.lower():
                    image_urls.append(url)

        with st.spinner("Analyzing the product... This may take a moment."):
            product_info_raw = await extract_data_from_product_image(image_urls)
            print(f"DEBUG product_info_raw from image : {product_info_raw}")
            if 'error' not in product_info_raw.keys():
                final_analysis = await analyze_product(product_info_raw)
                return [], final_analysis
            else:
                return [], f"Product information could not be extracted from the image because of {json.loads(product_info_raw)['error']}"

            
    else:
        return [], "I'm here to analyze food products. Please provide an image URL (Example : http://example.com/image.jpg) or product name (Example : Harvest Gold Bread)"

class SessionState:
    """Handles all session state variables in a centralized way"""
    @staticmethod
    def initialize():
        initial_states = {
            "messages": [],
            "product_selected": False,
            "product_shared": False,
            "analyze_more": True,
            "welcome_shown": False,
            "yes_no_choice": None,
            "welcome_msg": "Welcome to ConsumeWise! What product would you like me to analyze today? Example : Noodles, Peanut Butter etc",
            "similar_products": [],
            "awaiting_selection": False,
            "current_user_input": "",
            "selected_product": None
        }
        
        for key, value in initial_states.items():
            if key not in st.session_state:
                st.session_state[key] = value

class ProductSelector:
    """Handles product selection logic"""
    @staticmethod
    async def handle_selection():
        if st.session_state.similar_products:
            # Create a container for the selection UI
            selection_container = st.container()
            
            with selection_container:
                # Radio button for product selection
                choice = st.radio(
                    "Select a product:",
                    st.session_state.similar_products + ["None of the above"],
                    key="product_choice"
                )
                
                # Confirm button
                confirm_clicked = st.button("Confirm Selection")
                
                # Only process the selection when confirm is clicked
                msg = ""
                if confirm_clicked:
                    st.session_state.awaiting_selection = False
                    if choice != "None of the above":
                        #st.session_state.selected_product = choice
                        st.session_state.messages.append({"role": "assistant", "content": f"You selected {choice}"})
                        _, msg = await chatbot_response("", choice.split(" by ")[0], extract_info=True)
                        #Check if analysis couldn't be done because db had incomplete information
                        if msg != "product not found because product information in the db is corrupt":
                            #Only when msg is acceptable
                            st.session_state.messages.append({"role": "assistant", "content": msg})
                            with st.chat_message("assistant"):
                                st.markdown(msg)
                                
                            st.session_state.product_selected = True
                            
                            keys_to_keep = ["messages", "welcome_msg"]
                            keys_to_delete = [key for key in st.session_state.keys() if key not in keys_to_keep]
                        
                            for key in keys_to_delete:
                                del st.session_state[key]
                            st.session_state.welcome_msg = "What product would you like me to analyze next?"
                            
                    if choice == "None of the above" or msg == "product not found because product information in the db is corrupt":
                        st.session_state.messages.append(
                            {"role": "assistant", "content": "Please provide the image URL of the product to analyze based on the latest information."}
                        )
                        with st.chat_message("assistant"):
                            st.markdown("Please provide the image URL of the product to analyze based on the latest information.")
                        #st.session_state.selected_product = None
                        
                    st.rerun()
                
                # Prevent further chat input while awaiting selection
                return True  # Indicates selection is in progress
            
        return False  # Indicates no selection in progress

class ChatManager:
    """Manages chat interactions and responses"""
    @staticmethod
    async def process_response(user_input):
        if not st.session_state.product_selected:
            if "http:/" not in user_input and "https:/" not in user_input:
                response, status = await ChatManager._handle_product_name(user_input)
            else:
                response, status = await ChatManager._handle_product_url(user_input)
                
        return response, status

    @staticmethod
    async def _handle_product_name(user_input):
        st.session_state.product_shared = True
        st.session_state.current_user_input = user_input
        similar_products, _ = await chatbot_response(
            "", user_input, extract_info=False
        )
        
        
        if len(similar_products) > 0:
            st.session_state.similar_products = similar_products
            st.session_state.awaiting_selection = True
            return "Here are some similar products from our database. Please select:", "no success"
            
        return "Product not found in our database. Please provide the image URL of the product.", "no success"

    @staticmethod
    async def _handle_product_url(user_input):
        is_valid_url = (".jpeg" in user_input or ".jpg" in user_input) and \
                       ("http:/" in user_input or "https:/" in user_input)
        
        if not st.session_state.product_shared:
            return "Please provide the product name first"
        
        if is_valid_url and st.session_state.product_shared:
            _, msg = await chatbot_response(
                user_input, "", extract_info=True
            )
            st.session_state.product_selected = True
            if msg != "product not found because image is not clear" and "Product information could not be extracted from the image" not in msg:
                response = msg
                status = "success"
            elif msg == "product not found because image is not clear":
                response = msg + ". Please share clear image URLs!"
                status = "no success"
            else:
                response = msg + ".Please re-try!!"
                status = "no success"
                
            return response, status
                
        return "Please provide valid image URL of the product.", "no success"

async def main():
    # Initialize session state
    SessionState.initialize()
    
    # Display title
    st.title("ConsumeWise - Your Food Product Analysis Assistant")
    
    # Show welcome message
    if not st.session_state.welcome_shown:
        st.session_state.messages.append({
            "role": "assistant", 
            "content": st.session_state.welcome_msg
        })
        st.session_state.welcome_shown = True
    
    # Display chat history
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])
    
    # Handle product selection if awaiting
    selection_in_progress = False
    if st.session_state.awaiting_selection:
        selection_in_progress = await ProductSelector.handle_selection()
    
    # Only show chat input if not awaiting selection
    if not selection_in_progress:
        user_input = st.chat_input("Enter your message:", key="user_input")
        if user_input:
            # Add user message to chat
            st.session_state.messages.append({"role": "user", "content": user_input})
            with st.chat_message("user"):
                st.markdown(user_input)
            
            # Process response
            response, status = await ChatManager.process_response(user_input)

            st.session_state.messages.append({"role": "assistant", "content": response})
            with st.chat_message("assistant"):
                st.markdown(response)
                    
            if status == "success":               
                SessionState.initialize()  # Reset states for next product
                #st.session_state.welcome_msg = "What is the next product you would like me to analyze today?"
                keys_to_keep = ["messages", "welcome_msg"]
                keys_to_delete = [key for key in st.session_state.keys() if key not in keys_to_keep]
                    
                for key in keys_to_delete:
                    del st.session_state[key]
                st.session_state.welcome_msg = "What product would you like me to analyze next?"
                
            #else:
            #    print(f"DEBUG : st.session_state.awaiting_selection : {st.session_state.awaiting_selection}")
            st.rerun()
    else:
        # Disable chat input while selection is in progress
        st.chat_input("Please confirm your selection above first...", disabled=True)
    
    # Clear chat history button
    if st.button("Clear Chat History"):
        st.session_state.clear()
        st.rerun()

# Create a wrapper function to run the async main
def run_main():
    asyncio.run(main())

# Call the wrapper function in Streamlit
if __name__ == "__main__":
    run_main()