Spaces:
Runtime error
Runtime error
File size: 34,109 Bytes
35425fe 9bdf715 a44e7a3 d537bad 35425fe 9ecd019 3df82e7 d537bad 3df82e7 c8de088 c2c681a 9bdf715 4e5327b a44e7a3 0255157 984d233 0255157 984d233 0255157 35425fe 9ecd019 87ef96c bc8e131 d537bad 35425fe 9ecd019 d9613a5 9ecd019 9eeba30 bc8e131 d537bad 9ecd019 382719d 3df82e7 382719d 9bdf715 1de62d2 a6f8256 1de62d2 c2c681a 220a2a2 0d57cc7 9ecd019 35425fe 9bdf715 35425fe 984d233 35425fe 1d4ee51 382719d 1d4ee51 35425fe 0255157 d537bad 87ef96c ccf18cf 87ef96c 09febb6 e9534f2 09febb6 d537bad 17243e5 d537bad 874ee5e bc8e131 d537bad ccf18cf bc8e131 d537bad ccf18cf bc8e131 ccf18cf 874ee5e ccf18cf 874ee5e 9ecd019 c8de088 9ecd019 a44e7a3 cb9d2ba 874ee5e ccf18cf 9ecd019 cb9d2ba 9ecd019 ccf18cf 9ecd019 ccf18cf 9ecd019 cb9d2ba 9ecd019 09ba95f 9ecd019 9eeba30 c8de088 9eeba30 305cc19 9eeba30 c2c681a dd27b4a 87ef96c dd27b4a 87ef96c ccf18cf dd27b4a ccf18cf dd27b4a 87ef96c dd27b4a 87ef96c 9ecd019 c8de088 9ecd019 a44e7a3 17243e5 a44e7a3 ccf18cf 9ecd019 ccf18cf 9ecd019 ccf18cf 9ecd019 ccf18cf 9ecd019 ccf18cf 9ecd019 1d4ee51 0255157 c2c681a 0255157 6ea46f6 cb99910 6ea46f6 984d233 10f09b5 984d233 4e5327b d9c832e 0255157 d9c832e fc5b076 d681dde 6ea46f6 35425fe d681dde 2a72d30 d681dde 0255157 4e5327b 661913e 0255157 35425fe 0255157 4e5327b 0255157 35425fe 0255157 35425fe 6ea46f6 35425fe a44e7a3 35425fe 9bdf715 8cf313d 528f8b5 a44e7a3 9bdf715 528f8b5 9bdf715 a44e7a3 4e5327b a44e7a3 9680652 9bdf715 a44e7a3 0255157 a44e7a3 9680652 a44e7a3 9bdf715 a44e7a3 9bdf715 35425fe 1d4ee51 fb5e92b 0255157 fb5e92b 1d4ee51 35425fe 3482c99 35425fe 201deaf 35425fe 1d4ee51 35425fe 0255157 35425fe 8cf313d 0255157 35425fe 9bdf715 0255157 35425fe 9bdf715 0255157 9bdf715 c8de088 35425fe 984d233 9bdf715 4e5327b 9bdf715 4e5327b e438fb1 1fab675 e438fb1 9bdf715 c8de088 9bdf715 984d233 9bdf715 e438fb1 9bdf715 0255157 9bdf715 35425fe 9ecd019 0255157 35425fe 0255157 a44e7a3 35425fe 528f8b5 0255157 9680652 9bdf715 3df82e7 9bdf715 0255157 3b81a6b 644b61f 3b81a6b 9ecd019 3b81a6b 9ecd019 3b81a6b 17243e5 3b81a6b 1d4ee51 3b81a6b 1d4ee51 3b81a6b 35425fe 3b81a6b 644b61f 0255157 35425fe 0255157 220a2a2 0255157 35425fe 0255157 35425fe 0255157 644b61f 0255157 1d4ee51 35425fe 0255157 9bdf715 220a2a2 0255157 9ecd019 c2c681a 9ecd019 0255157 1de62d2 0255157 9ecd019 0255157 566249d 0255157 9ecd019 35425fe d537bad 35425fe 0255157 9ecd019 c2c681a 9ecd019 0255157 9bdf715 0255157 4e5327b 8cf313d 35425fe 0255157 a44e7a3 87ef96c a44e7a3 87ef96c 9ecd019 ccf18cf a44e7a3 9ecd019 87ef96c 35425fe 0255157 35425fe 3db00d1 4e5327b 0255157 35425fe 8cfbeb2 8b90d81 8cfbeb2 8b90d81 8cfbeb2 35425fe 0255157 35425fe 984d233 0255157 984d233 35425fe 0255157 35425fe 0255157 35425fe 0255157 35425fe 0255157 a44e7a3 0255157 e868bcb c8de088 0255157 8b90d81 c8de088 8b90d81 c8de088 8b90d81 c2c681a c8de088 0255157 c8de088 0255157 e868bcb afd9d5d 8b90d81 afd9d5d 8b90d81 afd9d5d 90aad7a afd9d5d 0255157 8cfbeb2 0255157 90aad7a 0255157 35425fe 0255157 35425fe 0255157 871f18f 09ba95f a44e7a3 871f18f 09febb6 dd27b4a 9bdf715 0255157 8cf313d 0255157 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 |
"""Prompter."""
import asyncio
import importlib
import logging
import os
import string
import sys
import aiohttp
import cohere
import numpy as np
import pandas as pd
import streamlit as st
from datasets import load_dataset
from datasets.tasks.text_classification import ClassLabel
from huggingface_hub import AsyncInferenceClient, dataset_info, model_info
from huggingface_hub.utils import (
HfHubHTTPError,
HFValidationError,
RepositoryNotFoundError,
)
from imblearn.under_sampling import RandomUnderSampler
from sklearn.metrics import (
ConfusionMatrixDisplay,
accuracy_score,
balanced_accuracy_score,
confusion_matrix,
matthews_corrcoef,
)
from sklearn.model_selection import StratifiedShuffleSplit
from spacy.lang.en import English
from tenacity import retry, stop_after_attempt, wait_random_exponential
from transformers import pipeline
HOW_OPENAI_INITIATED = None
LOGGER = logging.getLogger(__name__)
TITLE = "Prompter"
OPENAI_API_KEY = st.secrets.get("openai_api_key", None)
TOGETHER_API_KEY = st.secrets.get("together_api_key", None)
HF_TOKEN = st.secrets.get("hf_token", None)
COHERE_API_KEY = st.secrets.get("cohere_api_key", None)
AZURE_OPENAI_KEY = st.secrets.get("azure_openai_key", None)
AZURE_OPENAI_ENDPOINT = st.secrets.get("azure_openai_endpoint", None)
AZURE_DEPLOYMENT_NAME = st.secrets.get("azure_deployment_name", None)
HF_MODEL = os.environ.get("FM_MODEL", "")
HF_DATASET = os.environ.get("FM_HF_DATASET", "")
DATASET_SPLIT_SEED = os.environ.get("FM_DATASET_SPLIT_SEED", "")
TRAIN_SIZE = 15
TEST_SIZE = 25
BALANCING = True
RETRY_MIN_WAIT = 1
RETRY_MAX_WAIT = 60
RETRY_MAX_ATTEMPTS = 6
PROMPT_TEXT_HEIGHT = 300
UNKNOWN_LABEL = "Unknown"
SEARCH_ROW_DICT = {"First": 0, "Last": -1}
# TODO: Change start temperature to 0.0 when HF supports it
GENERATION_CONFIG_PARAMS = {
"temperature": {
"NAME": "Temperature",
"START": 0.1,
"END": 5.0,
"DEFAULT": 1.0,
"STEP": 0.1,
"SAMPLING": True,
},
"top_k": {
"NAME": "Top K",
"START": 0,
"END": 100,
"DEFAULT": 0,
"STEP": 10,
"SAMPLING": True,
},
"top_p": {
"NAME": "Top P",
"START": 0.1,
"END": 1.0,
"DEFAULT": 1.0,
"STEP": 0.1,
"SAMPLING": True,
},
"max_new_tokens": {
"NAME": "Max New Tokens",
"START": 16,
"END": 1024,
"DEFAULT": 16,
"STEP": 16,
"SAMPLING": False,
},
"do_sample": {
"NAME": "Sampling",
"DEFAULT": False,
},
"stop_sequences": {
"NAME": "Stop Sequences",
"DEFAULT": os.environ.get("FM_STOP_SEQUENCES", "").split(),
"SAMPLING": False,
},
}
GENERATION_CONFIG_DEFAULTS = {
key: value["DEFAULT"] for key, value in GENERATION_CONFIG_PARAMS.items()
}
st.set_page_config(page_title=TITLE, initial_sidebar_state="collapsed")
def get_processing_tokenizer():
return English().tokenizer
PROCESSING_TOKENIZER = get_processing_tokenizer()
class OpenAIAlreadyInitiatedError(Exception):
"""OpenAIAlreadyInitiatedError."""
pass
def prepare_huggingface_generation_config(generation_config):
generation_config = generation_config.copy()
# Reference for decoding stratagies:
# https://huggingface.co/docs/transformers/generation_strategies
# `text_generation_interface`
# Currenly supports only `greedy` amd `sampling` decoding strategies
# Following , we add `do_sample` if any of the other
# samling related parameters are set
# https://github.com/huggingface/text-generation-inference/blob/e943a294bca239e26828732dd6ab5b6f95dadd0a/server/text_generation_server/utils/tokens.py#L46
# `transformers`
# According to experimentations, it seems that `transformers` behave similarly
# I'm not sure what is the right behavior here, but it is better to be explicit
for name, params in GENERATION_CONFIG_PARAMS.items():
# Checking for START to examine the a slider parameters only
if (
"START" in params
and params["SAMPLING"]
and name in generation_config
and generation_config[name] is not None
):
if generation_config[name] == params["DEFAULT"]:
generation_config[name] = None
else:
assert generation_config["do_sample"]
# TODO: refactor this part
if generation_config["is_chat"]:
generation_config["max_tokens"] = generation_config.pop("max_new_tokens")
generation_config["stop"] = generation_config.pop("stop_sequences")
del generation_config["do_sample"]
del generation_config["top_k"]
is_chat = generation_config.pop("is_chat")
return generation_config, is_chat
def escape_markdown(text):
escape_dict = {
"*": r"\*",
"_": r"\_",
"{": r"\{",
"}": r"\}",
"[": r"\[",
"]": r"\]",
"(": r"\(",
")": r"\)",
"+": r"\+",
"-": r"\-",
".": r"\.",
"!": r"\!",
"`": r"\`",
">": r"\>",
"|": r"\|",
"#": r"\#",
}
return "".join([escape_dict.get(c, c) for c in text])
def reload_module(name):
if name in sys.modules:
del sys.modules[name]
return importlib.import_module(name)
def build_api_call_function(model):
global HOW_OPENAI_INITIATED
if any(
model.startswith(known_providers)
for known_providers in ("openai", "azure", "together")
):
provider, model = model.split("/", maxsplit=1)
if provider == "openai":
from openai import AsyncOpenAI
aclient = AsyncOpenAI(api_key=OPENAI_API_KEY)
elif provider == "azure":
from openai import AsyncAzureOpenAI
aclient = AsyncAzureOpenAI(
# https://learn.microsoft.com/azure/ai-services/openai/reference#rest-api-versioning
api_version="2023-07-01-preview",
# https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource
azure_endpoint=AZURE_OPENAI_ENDPOINT,
)
elif provider == "together":
from openai import AsyncOpenAI
aclient = AsyncOpenAI(
api_key=TOGETHER_API_KEY, base_url="https://api.together.xyz/v1"
)
if provider in ("openai", "azure"):
async def list_models():
return [model async for model in aclient.models.list()]
openai_models = {model_obj.id for model_obj in asyncio.run(list_models())}
assert model in openai_models
@retry(
wait=wait_random_exponential(min=RETRY_MIN_WAIT, max=RETRY_MAX_WAIT),
stop=stop_after_attempt(RETRY_MAX_ATTEMPTS),
reraise=True,
)
async def api_call_function(prompt, generation_config):
temperature = (
generation_config["temperature"]
if generation_config["do_sample"]
else 0
)
top_p = generation_config["top_p"] if generation_config["do_sample"] else 1
max_tokens = generation_config["max_new_tokens"]
if (
model.startswith("gpt") and "instruct" not in model
) or provider == "together":
response = await aclient.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
)
assert response.choices[0].message.role == "assistant"
output = response.choices[0].message.content
else:
response = await aclient.completions.create(
model=model,
prompt=prompt,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
)
output = response.choices[0].text
try:
length = response.usage.total_tokens
except AttributeError:
length = None
return output, length
elif model.startswith("cohere"):
_, model = model.split("/")
@retry(
wait=wait_random_exponential(min=RETRY_MIN_WAIT, max=RETRY_MAX_WAIT),
stop=stop_after_attempt(RETRY_MAX_ATTEMPTS),
reraise=True,
)
async def api_call_function(prompt, generation_config):
async with cohere.AsyncClient(COHERE_API_KEY) as co:
response = await co.generate(
model=model,
prompt=prompt,
temperature=generation_config["temperature"]
if generation_config["do_sample"]
else 0,
p=generation_config["top_p"]
if generation_config["do_sample"]
else 1,
k=generation_config["top_k"]
if generation_config["do_sample"]
else 0,
max_tokens=generation_config["max_new_tokens"],
end_sequences=generation_config["stop_sequences"],
)
output = response.generations[0].text
length = None
return output, length
elif model.startswith("@"):
model = model[1:]
pipe = pipeline(
"text-generation", model=model, trust_remote_code=True, device_map="auto"
)
async def api_call_function(prompt, generation_config):
generation_config, _ = prepare_huggingface_generation_config(
generation_config
)
# TODO: include chat
output = pipe(prompt, return_text=True, **generation_config)[0][
"generated_text"
]
output = output[len(prompt) :]
length = None
return output, length
else:
@retry(
wait=wait_random_exponential(min=RETRY_MIN_WAIT, max=RETRY_MAX_WAIT),
stop=stop_after_attempt(RETRY_MAX_ATTEMPTS),
reraise=True,
)
async def api_call_function(prompt, generation_config):
hf_client = AsyncInferenceClient(token=HF_TOKEN, model=model)
generation_config, is_chat = prepare_huggingface_generation_config(
generation_config
)
if is_chat:
messages = [{"role": "user", "content": prompt}]
response = await hf_client.chat_completion(
messages, stream=False, **generation_config
)
output = response.choices[0].message.content
length = None
else:
response = await hf_client.text_generation(
prompt, stream=False, details=True, **generation_config
)
length = (
len(response.details.prefill) + len(response.details.tokens)
if response.details is not None
else None
)
output = response.generated_text
# TODO: refactor to support stop of chats
# Remove stop sequences from the output
# Inspired by
# https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/inference.py
# https://huggingface.co/spaces/tiiuae/falcon-chat/blob/main/app.py
if (
"stop_sequences" in generation_config
and generation_config["stop_sequences"] is not None
):
for stop_sequence in generation_config["stop_sequences"]:
output = output.rsplit(stop_sequence, maxsplit=1)[0]
return output, length
return api_call_function
def strip_newline_space(text):
return text.strip("\n").strip()
def normalize(text):
return strip_newline_space(text).lower().capitalize()
def prepare_datasets(
dataset_name,
take_split="train",
train_size=TRAIN_SIZE,
test_size=TEST_SIZE,
balancing=BALANCING,
dataset_split_seed=None,
):
try:
ds = load_dataset(dataset_name, trust_remote_code=True)
except FileNotFoundError as e:
try:
assert "/" in dataset_name
dataset_name, subset_name = dataset_name.rsplit("/", 1)
ds = load_dataset(dataset_name, subset_name, trust_remote_code=True)
except (FileNotFoundError, AssertionError):
st.error(f"Dataset `{dataset_name}` not found.")
st.stop()
label_columns = [
(name, info)
for name, info in ds["train"].features.items()
if isinstance(info, ClassLabel)
]
assert len(label_columns) == 1
label_column, label_column_info = label_columns[0]
labels = [normalize(label) for label in label_column_info.names]
label_dict = dict(enumerate(labels))
if any(len(PROCESSING_TOKENIZER(label)) > 1 for label in labels):
st.error(
"Labels are not single words. "
"Matching labels won't not work as expected."
)
original_input_columns = [
name
for name, info in ds["train"].features.items()
if not isinstance(info, ClassLabel) and info.dtype == "string"
]
input_columns = []
for input_column in original_input_columns:
lowered_input_column = input_column.lower()
if input_column != lowered_input_column:
ds = ds.rename_column(input_column, lowered_input_column)
input_columns.append(lowered_input_column)
df = ds[take_split].to_pandas()
for input_column in input_columns:
df[input_column] = df[input_column].apply(strip_newline_space)
df[label_column] = df[label_column].replace(label_dict)
df = df[[label_column] + input_columns]
if train_size is not None and test_size is not None:
undersample = RandomUnderSampler(
sampling_strategy="not minority", random_state=dataset_split_seed
)
df, df[label_column] = undersample.fit_resample(df, df[label_column])
sss = StratifiedShuffleSplit(
n_splits=1,
train_size=train_size,
test_size=test_size,
random_state=dataset_split_seed,
)
train_index, test_index = next(iter(sss.split(df, df[label_column])))
train_df = df.iloc[train_index]
test_df = df.iloc[test_index]
dfs = {"train": train_df, "test": test_df}
else:
dfs = {take_split: df}
return dataset_name, dfs, input_columns, label_column, labels
async def complete(api_call_function, prompt, generation_config=None):
if generation_config is None:
generation_config = {}
LOGGER.info(f"API Call\n\n``{prompt}``\n\n{generation_config=}")
output, length = await api_call_function(prompt, generation_config)
return output, length
async def infer(api_call_function, prompt_template, inputs, generation_config=None):
prompt = prompt_template.format(**inputs)
output, length = await complete(api_call_function, prompt, generation_config)
return output, prompt, length
async def infer_multi(
api_call_function, prompt_template, inputs_df, generation_config=None
):
results = await asyncio.gather(
*(
infer(
api_call_function, prompt_template, inputs.to_dict(), generation_config
)
for _, inputs in inputs_df.iterrows()
)
)
return zip(*results)
def preprocess_output_line(text):
return [
normalize(token_str)
for token in PROCESSING_TOKENIZER(text)
if (token_str := str(token))
]
# Inspired by OpenAI depcriated classification endpoint API
# They take the label from the first line of the output
# https://github.com/openai/openai-cookbook/blob/main/transition_guides_for_deprecated_API_endpoints/classification_functionality_example.py
# https://help.openai.com/en/articles/6272941-classifications-transition-guide#h_e63b71a5c8
# Here we take the label from either the *first* or *last* (for CoT) line of the output
# This is not very robust, but it's a start that doesn't requires asking for a structured output such as JSON
# HELM has more robust processing options, we are not using them, but these are the references:
# https://github.com/stanford-crfm/helm/blob/04a75826ce75835f6d22a7d41ae1487104797964/src/helm/benchmark/metrics/classification_metrics.py
# https://github.com/stanford-crfm/helm/blob/04a75826ce75835f6d22a7d41ae1487104797964/src/helm/benchmark/metrics/basic_metrics.py
def canonize_label(output, annotation_labels, search_row):
assert search_row in SEARCH_ROW_DICT.keys()
search_row_index = SEARCH_ROW_DICT[search_row]
annotation_labels_set = set(annotation_labels)
output_lines = strip_newline_space(output).split("\n")
output_search_words = preprocess_output_line(output_lines[search_row_index])
label_matches = set(output_search_words) & annotation_labels_set
if len(label_matches) == 1:
return next(iter(label_matches))
else:
return UNKNOWN_LABEL
def measure(dataset, outputs, labels, label_column, input_columns, search_row):
inferences = [canonize_label(output, labels, search_row) for output in outputs]
LOGGER.info(f"{inferences=}")
LOGGER.info(f"{labels=}")
inference_labels = labels + [UNKNOWN_LABEL]
evaluation_df = pd.DataFrame(
{
"hit/miss": np.where(dataset[label_column] == inferences, "hit", "miss"),
"annotation": dataset[label_column],
"inference": inferences,
"output": outputs,
}
| dataset[input_columns].to_dict("list")
)
unknown_proportion = (evaluation_df["inference"] == UNKNOWN_LABEL).mean()
acc = accuracy_score(evaluation_df["annotation"], evaluation_df["inference"])
bacc = balanced_accuracy_score(
evaluation_df["annotation"], evaluation_df["inference"]
)
mcc = matthews_corrcoef(evaluation_df["annotation"], evaluation_df["inference"])
cm = confusion_matrix(
evaluation_df["annotation"], evaluation_df["inference"], labels=inference_labels
)
cm_display = ConfusionMatrixDisplay(cm, display_labels=inference_labels)
cm_display.plot()
cm_display.ax_.set_xlabel("Inference Labels")
cm_display.ax_.set_ylabel("Annotation Labels")
cm_display.figure_.autofmt_xdate(rotation=45)
metrics = {
"unknown_proportion": unknown_proportion,
"accuracy": acc,
"balanced_accuracy": bacc,
"mcc": mcc,
"confusion_matrix": cm,
"confusion_matrix_display": cm_display.figure_,
"hit_miss": evaluation_df,
"annotation_labels": labels,
"inference_labels": inference_labels,
}
return metrics
def run_evaluation(
api_call_function,
prompt_template,
dataset,
labels,
label_column,
input_columns,
search_row,
generation_config=None,
):
inputs_df = dataset[input_columns]
outputs, prompts, lengths = asyncio.run(
infer_multi(
api_call_function,
prompt_template,
inputs_df,
generation_config,
)
)
metrics = measure(dataset, outputs, labels, label_column, input_columns, search_row)
metrics["hit_miss"]["prompt"] = prompts
metrics["hit_miss"]["length"] = lengths
return metrics
def combine_labels(labels):
return "|".join(f"``{label}``" for label in labels)
def main():
try:
if "dataset_split_seed" not in st.session_state:
st.session_state["dataset_split_seed"] = (
int(DATASET_SPLIT_SEED) if DATASET_SPLIT_SEED else None
)
if "train_size" not in st.session_state:
st.session_state["train_size"] = TRAIN_SIZE
if "test_size" not in st.session_state:
st.session_state["test_size"] = TEST_SIZE
if "api_call_function" not in st.session_state:
st.session_state["api_call_function"] = build_api_call_function(
model=HF_MODEL,
)
if "train_dataset" not in st.session_state:
(
st.session_state["dataset_name"],
splits_df,
st.session_state["input_columns"],
st.session_state["label_column"],
st.session_state["labels"],
) = prepare_datasets(
HF_DATASET,
train_size=st.session_state.train_size,
test_size=st.session_state.test_size,
dataset_split_seed=st.session_state.dataset_split_seed,
)
for split in splits_df:
st.session_state[f"{split}_dataset"] = splits_df[split]
if "generation_config" not in st.session_state:
st.session_state["generation_config"] = GENERATION_CONFIG_DEFAULTS
except Exception as e:
st.error(e)
st.title(TITLE)
with st.sidebar:
with st.form("model_form"):
model = st.text_input("Model", HF_MODEL).strip()
# Defautlt values from:
# https://huggingface.co/docs/transformers/v4.30.0/main_classes/text_generation
# Edges values from:
# https://docs.cohere.com/reference/generate
# https://platform.openai.com/playground
generation_config_sliders = {
name: st.slider(
params["NAME"],
params["START"],
params["END"],
params["DEFAULT"],
params["STEP"],
)
for name, params in GENERATION_CONFIG_PARAMS.items()
if "START" in params
}
do_sample = st.checkbox(
GENERATION_CONFIG_PARAMS["do_sample"]["NAME"],
value=GENERATION_CONFIG_PARAMS["do_sample"]["DEFAULT"],
)
stop_sequences = st.text_area(
GENERATION_CONFIG_PARAMS["stop_sequences"]["NAME"],
value="\n".join(GENERATION_CONFIG_PARAMS["stop_sequences"]["DEFAULT"]),
)
stop_sequences = [
clean_stop.encode().decode("unicode_escape") # interpret \n as newline
for stop in stop_sequences.split("\n")
if (clean_stop := stop.strip())
]
if not stop_sequences:
stop_sequences = None
decoding_seed = st.text_input("Decoding Seed").strip()
st.divider()
dataset = st.text_input("Dataset", HF_DATASET).strip()
train_size = st.number_input("Train Size", value=TRAIN_SIZE, min_value=10)
test_size = st.number_input("Test Size", value=TEST_SIZE, min_value=10)
balancing = st.checkbox("Balancing", BALANCING)
dataset_split_seed = st.text_input(
"Dataset Split Seed", DATASET_SPLIT_SEED
).strip()
st.divider()
submitted = st.form_submit_button("Set")
if submitted:
if not dataset:
st.error("Dataset must be specified.")
st.stop()
if not model:
st.error("Model must be specified.")
st.stop()
if not decoding_seed:
decoding_seed = None
elif seed.isnumeric():
decoding_seed = int(seed)
else:
st.error("Seed must be numeric or empty.")
st.stop()
generation_confing_slider_sampling = {
name: value
for name, value in generation_config_sliders.items()
if GENERATION_CONFIG_PARAMS[name]["SAMPLING"]
}
if (
any(
value != GENERATION_CONFIG_DEFAULTS[name]
for name, value in generation_confing_slider_sampling.items()
)
and not do_sample
):
sampling_slider_default_values_info = " | ".join(
f"{name}={GENERATION_CONFIG_DEFAULTS[name]}"
for name in generation_confing_slider_sampling
)
st.error(
f"Sampling must be enabled to use non default values for generation parameters: {sampling_slider_default_values_info}"
)
st.stop()
if decoding_seed is not None and not do_sample:
st.error(
"Sampling must be enabled to use a decoding seed. Otherwise, the seed field should be empty."
)
st.stop()
if not dataset_split_seed:
dataset_split_seed = None
elif dataset_split_seed.isnumeric():
dataset_split_seed = int(dataset_split_seed)
else:
st.error("Dataset split seed must be numeric or empty.")
st.stop()
generation_config = generation_config_sliders | dict(
do_sample=do_sample,
stop_sequences=stop_sequences,
seed=decoding_seed,
)
st.session_state["dataset_split_seed"] = dataset_split_seed
st.session_state["train_size"] = train_size
st.session_state["test_size"] = test_size
try:
st.session_state["api_call_function"] = build_api_call_function(
model=model,
)
except OpenAIAlreadyInitiatedError as e:
st.error(e)
st.stop()
st.session_state["generation_config"] = generation_config
(
st.session_state["dataset_name"],
splits_df,
st.session_state["input_columns"],
st.session_state["label_column"],
st.session_state["labels"],
) = prepare_datasets(
dataset,
train_size=st.session_state.train_size,
test_size=st.session_state.test_size,
balancing=balancing,
dataset_split_seed=st.session_state.dataset_split_seed,
)
for split in splits_df:
st.session_state[f"{split}_dataset"] = splits_df[split]
LOGGER.info(f"FORM {dataset=}")
LOGGER.info(f"FORM {model=}")
LOGGER.info(f"FORM {generation_config=}")
with st.expander("Info"):
try:
data_card = dataset_info(st.session_state.dataset_name).cardData
except (HFValidationError, RepositoryNotFoundError):
pass
else:
st.caption("Dataset")
st.write(data_card)
try:
model_info_respose = model_info(model)
model_card = model_info_respose.cardData
st.session_state["generation_config"]["is_chat"] = (
"conversational" in model_info_respose.tags
)
except (HFValidationError, RepositoryNotFoundError):
pass
else:
st.caption("Model")
st.write(model_card)
# st.write(f"Model max length: {AutoTokenizer.from_pretrained(model).model_max_length}")
tab1, tab2, tab3 = st.tabs(["Evaluation", "Examples", "Playground"])
with tab1:
with st.form("prompt_form"):
prompt_template = st.text_area("Prompt Template", height=PROMPT_TEXT_HEIGHT)
is_multi_placeholder = len(st.session_state.input_columns) > 1
st.write(
f"To determine the inferred label of an input, the model should output one of the following words:"
f" {combine_labels(st.session_state.labels)}"
)
st.write(
f"The input placeholder{'s' if is_multi_placeholder else ''} available for the prompt template {'are' if is_multi_placeholder else 'is'}:"
f" {combine_labels(f'{{{col}}}' for col in st.session_state.input_columns)}"
)
col1, col2 = st.columns(2)
with col1:
search_row = st.selectbox(
"Search label at which row", list(SEARCH_ROW_DICT)
)
with col2:
submitted = st.form_submit_button("Evaluate")
if submitted:
if not prompt_template:
st.error("Prompt template must be specified.")
st.stop()
_, formats, *_ = zip(*string.Formatter().parse(prompt_template))
is_valid_prompt_template = set(formats).issubset(
{None} | set(st.session_state.input_columns)
)
if not is_valid_prompt_template:
st.error(f"The prompt template contains unrecognized fields.")
st.stop()
with st.spinner("Executing inference..."):
try:
evaluation = run_evaluation(
st.session_state.api_call_function,
prompt_template,
st.session_state.test_dataset,
st.session_state.labels,
st.session_state.label_column,
st.session_state.input_columns,
search_row,
st.session_state.generation_config,
)
except HfHubHTTPError as e:
st.error(e)
st.stop()
st.markdown("### Metrics")
num_metric_cols = 2 if balancing else 4
cols = st.columns(num_metric_cols)
with cols[0]:
st.metric("Accuracy", f"{100 * evaluation['accuracy']:.0f}%")
st.caption("The percentage of correct inferences.")
with cols[1]:
st.metric(
"Unknown",
f"{100 * evaluation['unknown_proportion']:.0f}%",
)
st.caption(
"The percentage of inferences"
" that could not be determined based on the model output."
)
if not balancing:
with cols[2]:
st.metric(
"Balanced Accuracy",
f"{100 * evaluation['balanced_accuracy']:.0f}%",
)
with cols[3]:
st.metric("MCC", f"{evaluation['mcc']:.2f}")
st.markdown("### Detailed Evaluation")
st.caption(
"This table showcases all examples (input and output pairs) that were leveraged for the evaluation of the prompt template with the model (for instance, accuracy)."
" It comprises the input placeholder values, the unmodified model *output*, the deduced *inference*, and the ground-truth *annotation*."
)
st.caption(
"A 'hit' signifies a correct inference (when *inference* coincides with *annotation*), while a 'miss' denotes an incorrect inference."
" If the *inference* cannot be determined based on the model output, it is labeled as 'unknown'."
)
st.caption(
"The *prompt* column features the complete prompt that the model was prompted to complete, i.e., your prompt template filled with the input placeholders you have used."
)
st.caption(
"You are not allowed to include these examples in your prompt template."
)
st.dataframe(evaluation["hit_miss"])
with st.expander("Additional Information", expanded=False):
st.markdown("## Confusion Matrix")
st.pyplot(evaluation["confusion_matrix_display"])
if evaluation["accuracy"] == 1:
st.balloons()
with tab2:
st.caption(
"You can include the following examples in your prompt template for few-shot prompting."
)
st.dataframe(st.session_state.train_dataset)
with tab3:
prompt = st.text_area("Prompt", height=PROMPT_TEXT_HEIGHT)
submitted = st.button("Complete")
if submitted:
if not prompt:
st.error("Prompt must be specified.")
st.stop()
with st.spinner("Generating..."):
try:
output, length = asyncio.run(
complete(
st.session_state.api_call_function,
prompt,
st.session_state.generation_config,
)
)
except HfHubHTTPError as e:
st.error(e)
st.stop()
st.markdown(escape_markdown(output))
if length is not None:
with st.expander("Stats"):
st.metric("#Tokens", length)
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()
|