fm / app.py
shlomihod
fix lower column name bug
2a72d30
raw
history blame
18.2 kB
"""Prompter."""
import logging
import string
import numpy as np
import pandas as pd
import streamlit as st
from datasets import load_dataset
from datasets.tasks.text_classification import ClassLabel
from huggingface_hub import InferenceClient, model_info, dataset_info
from huggingface_hub.utils import HfHubHTTPError
from sklearn.metrics import ConfusionMatrixDisplay, accuracy_score, confusion_matrix
from spacy.lang.en import English
LOGGER = logging.getLogger(__name__)
TITLE = "Prompter"
HF_MODEL = st.secrets.get("hf_model", "")
HF_DATASET = st.secrets.get("hf_dataset", "")
DATASET_SPLIT_SEED = 42
TRAIN_SIZE = 10
TEST_SIZE = 25
SPLITS = ["train", "test"]
PROMPT_TEXT_HEIGHT = 300
UNKNOWN_LABEL = "Unknown"
SEARCH_ROW_DICT = {"First": 0, "Last": -1}
# TODO: Change start temperature to 0.0 when HF supports it
GENERATION_CONFIG_PARAMS = {
"temperature": {
"NAME": "Temperature",
"START": 0.1,
"END": 5.0,
"DEFAULT": 1.0,
"STEP": 0.1,
"SAMPLING": True,
},
"top_k": {
"NAME": "Top K",
"START": 0,
"END": 100,
"DEFAULT": 0,
"STEP": 10,
"SAMPLING": True,
},
"top_p": {
"NAME": "Top P",
"START": 0.1,
"END": 1.0,
"DEFAULT": 1.0,
"STEP": 0.1,
"SAMPLING": True,
},
"max_new_tokens": {
"NAME": "Max New Tokens",
"START": 16,
"END": 256,
"DEFAULT": 16,
"STEP": 16,
"SAMPLING": False,
},
"do_sample": {
"NAME": "Sampling",
"DEFAULT": False,
},
"stop_sequences": {
"NAME": "Stop Sequences",
"DEFAULT": st.secrets.get("stop_sequences", "").split(),
"SAMPLING": False,
},
}
GENERATION_CONFIG_DEFAULTS = {
key: value["DEFAULT"] for key, value in GENERATION_CONFIG_PARAMS.items()
}
def strip_newline_space(text):
return text.strip("\n").strip()
def normalize(text):
return strip_newline_space(text).lower().capitalize()
def prepare_datasets(dataset_name):
try:
ds = load_dataset(dataset_name)
except FileNotFoundError as e:
assert "/" in dataset_name
dataset_name, subset_name = dataset_name.rsplit("/", 1)
ds = load_dataset(dataset_name, subset_name)
label_columns = [
(name, info)
for name, info in ds["train"].features.items()
if isinstance(info, ClassLabel)
]
assert len(label_columns) == 1
label_column, label_column_info = label_columns[0]
labels = [normalize(label) for label in label_column_info.names]
label_dict = dict(enumerate(labels))
if any(len(st.session_state.processing_tokenizer(label)) > 1 for label in labels):
st.error(
"Labels are not single words. "
"Matching labels won't not work as expected."
)
original_input_columns = [
name
for name, info in ds["train"].features.items()
if not isinstance(info, ClassLabel) and info.dtype == "string"
]
input_columns = []
for input_column in original_input_columns:
lowered_input_column = input_column.lower()
if input_column != lowered_input_column:
ds = ds.rename_column(input_column, lowered_input_column)
input_columns.append(lowered_input_column)
ds = ds["train"].train_test_split(
train_size=TRAIN_SIZE, test_size=TEST_SIZE, seed=DATASET_SPLIT_SEED
)
dfs = {}
for split in SPLITS:
ds_split = ds[split]
df = ds_split.to_pandas()
for input_column in input_columns:
df[input_column] = df[input_column].apply(strip_newline_space)
df[label_column] = df[label_column].replace(label_dict)
dfs[split] = df
return dataset_name, dfs, input_columns, label_column, labels
def complete(prompt, generation_config, details=True):
if generation_config is None:
generation_config = {}
# Reference for decoding stratagies:
# https://huggingface.co/docs/transformers/generation_strategies
# `text_generation_interface`
# Currenly supports only `greedy` amd `sampling` decoding strategies
# Following , we add `do_sample` if any of the other
# samling related parameters are set
# https://github.com/huggingface/text-generation-inference/blob/e943a294bca239e26828732dd6ab5b6f95dadd0a/server/text_generation_server/utils/tokens.py#L46
# `transformers`
# According to experimentations, it seems that `transformers` behave similarly
# I'm not sure what is the right behavior here, but it is better to be explicit
for name, params in GENERATION_CONFIG_PARAMS.items():
# Checking for START to examine the a slider parameters only
if (
"START" in params
and params["SAMPLING"]
and name in generation_config
and generation_config[name] is not None
):
if generation_config[name] == params["DEFAULT"]:
generation_config[name] = None
else:
assert generation_config["do_sample"]
LOGGER.warning(f"API Call\n\n``{prompt}``\n\n{generation_config=}")
response = st.session_state.client.text_generation(
prompt, stream=False, details=details, **generation_config
)
LOGGER.warning(response)
length = (
len(response.details.prefill) + len(response.details.tokens)
if details
else None
)
output = response.generated_text if details else response
# Remove stop sequences from the output
# Inspired by
# https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/inference.py
# https://huggingface.co/spaces/tiiuae/falcon-chat/blob/main/app.py
if (
"stop_sequences" in generation_config
and generation_config["stop_sequences"] is not None
):
for stop_sequence in generation_config["stop_sequences"]:
output = output.rsplit(stop_sequence, maxsplit=1)[0]
# response = st.session_state.client.post(json={"inputs": prompt})
# output = response.json()[0]["generated_text"]
# output = st.session_state.client.conversational(prompt, model=model)
# output = output if "https" in st.session_state.client.model else output[len(prompt) :]
return output, length
def infer(prompt_template, inputs, generation_config=None):
prompt = prompt_template.format(**inputs)
output, length = complete(prompt, generation_config)
return output, prompt, length
def infer_multi(prompt_template, inputs_df, generation_config=None, progress=None):
props = (i / len(inputs_df) for i in range(1, len(inputs_df) + 1))
def infer_with_progress(inputs):
output, prompt, length = infer(
prompt_template, inputs.to_dict(), generation_config
)
if progress is not None:
progress.progress(next(props))
return output, prompt, length
return zip(*inputs_df.apply(infer_with_progress, axis=1))
def preprocess_output_line(text):
return [
normalize(token_str)
for token in st.session_state.processing_tokenizer(text)
if (token_str := str(token))
]
# Inspired by OpenAI depcriated classification endpoint API
# They take the label from the first line of the output
# https://github.com/openai/openai-cookbook/blob/main/transition_guides_for_deprecated_API_endpoints/classification_functionality_example.py
# https://help.openai.com/en/articles/6272941-classifications-transition-guide#h_e63b71a5c8
# Here we take the label from either the *first* or *last* (for CoT) line of the output
# This is not very robust, but it's a start that doesn't requires asking for a structured output such as JSON
# HELM has more robust processing options, we are not using them, but these are the references:
# https://github.com/stanford-crfm/helm/blob/04a75826ce75835f6d22a7d41ae1487104797964/src/helm/benchmark/metrics/classification_metrics.py
# https://github.com/stanford-crfm/helm/blob/04a75826ce75835f6d22a7d41ae1487104797964/src/helm/benchmark/metrics/basic_metrics.py
def canonize_label(output, annotation_labels, search_row):
assert search_row in SEARCH_ROW_DICT.keys()
search_row_index = SEARCH_ROW_DICT[search_row]
annotation_labels_set = set(annotation_labels)
output_lines = strip_newline_space(output).split("\n")
output_search_words = preprocess_output_line(output_lines[search_row_index])
label_matches = set(output_search_words) & annotation_labels_set
if len(label_matches) == 1:
return next(iter(label_matches))
else:
return UNKNOWN_LABEL
def measure(dataset, outputs, search_row):
inferences = [
canonize_label(output, st.session_state.labels, search_row)
for output in outputs
]
print(f"{inferences=}")
print(f"{st.session_state.labels=}")
inference_labels = st.session_state.labels + [UNKNOWN_LABEL]
evaluation_df = pd.DataFrame(
{
"hit/miss": np.where(
dataset[st.session_state.label_column] == inferences, "hit", "miss"
),
"annotation": dataset[st.session_state.label_column],
"inference": inferences,
"output": outputs,
}
| dataset[st.session_state.input_columns].to_dict("list")
)
acc = accuracy_score(evaluation_df["annotation"], evaluation_df["inference"])
cm = confusion_matrix(
evaluation_df["annotation"], evaluation_df["inference"], labels=inference_labels
)
cm_display = ConfusionMatrixDisplay(cm, display_labels=inference_labels)
cm_display.plot()
cm_display.ax_.set_xlabel("Inference Labels")
cm_display.ax_.set_ylabel("Annotation Labels")
cm_display.figure_.autofmt_xdate(rotation=45)
metrics = {
"accuracy": acc,
"confusion_matrix": cm,
"confusion_matrix_display": cm_display.figure_,
"hit_miss": evaluation_df,
"annotation_labels": st.session_state.labels,
"inference_labels": inference_labels,
}
return metrics
def run_evaluation(
prompt_template, dataset, search_row, generation_config=None, progress=None
):
inputs_df = dataset[st.session_state.input_columns]
outputs, prompts, lengths = infer_multi(
prompt_template,
inputs_df,
generation_config,
progress,
)
metrics = measure(dataset, outputs, search_row)
metrics["hit_miss"]["prompt"] = prompts
metrics["hit_miss"]["length"] = lengths
return metrics
def combine_labels(labels):
return "|".join(f"``{label}``" for label in labels)
if "client" not in st.session_state:
st.session_state["client"] = InferenceClient(
token=st.secrets.get("hf_token", None), model=HF_MODEL
)
if "processing_tokenizer" not in st.session_state:
st.session_state["processing_tokenizer"] = English().tokenizer
if "train_dataset" not in st.session_state:
(
st.session_state["dataset_name"],
splits_df,
st.session_state["input_columns"],
st.session_state["label_column"],
st.session_state["labels"],
) = prepare_datasets(HF_DATASET)
for split in splits_df:
st.session_state[f"{split}_dataset"] = splits_df[split]
if "generation_config" not in st.session_state:
st.session_state["generation_config"] = GENERATION_CONFIG_DEFAULTS
st.set_page_config(page_title=TITLE, initial_sidebar_state="collapsed")
st.title(TITLE)
with st.sidebar:
with st.form("model_form"):
dataset = st.text_input("Dataset", HF_DATASET).strip()
model = st.text_input("Model", HF_MODEL).strip()
# Defautlt values from:
# https://huggingface.co/docs/transformers/v4.30.0/main_classes/text_generation
# Edges values from:
# https://docs.cohere.com/reference/generate
# https://platform.openai.com/playground
generation_config_sliders = {
name: st.slider(
params["NAME"],
params["START"],
params["END"],
params["DEFAULT"],
params["STEP"],
)
for name, params in GENERATION_CONFIG_PARAMS.items()
if "START" in params
}
do_sample = st.checkbox(
GENERATION_CONFIG_PARAMS["do_sample"]["NAME"],
value=GENERATION_CONFIG_PARAMS["do_sample"]["DEFAULT"],
)
stop_sequences = st.text_area(
GENERATION_CONFIG_PARAMS["stop_sequences"]["NAME"],
value="\n".join(GENERATION_CONFIG_PARAMS["stop_sequences"]["DEFAULT"]),
)
stop_sequences = [
clean_stop.encode().decode("unicode_escape") # interpret \n as newline
for stop in stop_sequences.split("\n")
if (clean_stop := stop.strip())
]
if not stop_sequences:
stop_sequences = None
seed = st.text_input("Seed").strip()
submitted = st.form_submit_button("Set")
if submitted:
if not dataset:
st.error("Dataset must be specified.")
st.stop()
if not model:
st.error("Model must be specified.")
st.stop()
if not seed:
seed = None
elif seed.isnumeric():
seed = int(seed)
else:
st.error("Seed must be numeric or empty.")
st.stop()
generation_confing_slider_sampling = {
name: value
for name, value in generation_config_sliders.items()
if GENERATION_CONFIG_PARAMS[name]["SAMPLING"]
}
if (
any(
value != GENERATION_CONFIG_DEFAULTS[name]
for name, value in generation_confing_slider_sampling.items()
)
and not do_sample
):
sampling_slider_default_values_info = " | ".join(
f"{name}={GENERATION_CONFIG_DEFAULTS[name]}"
for name in generation_confing_slider_sampling
)
st.error(
f"Sampling must be enabled to use non default values for generation parameters: {sampling_slider_default_values_info}"
)
st.stop()
if seed is not None and not do_sample:
st.error(
"Sampling must be enabled to use a seed. Otherwise, the seed field should be empty."
)
st.stop()
generation_config = generation_config_sliders | dict(
do_sample=do_sample, stop_sequences=stop_sequences, seed=seed
)
st.session_state["client"] = InferenceClient(
token=st.secrets.get("hf_token", None), model=model
)
st.session_state["generation_config"] = generation_config
(
st.session_state["dataset_name"],
splits_df,
st.session_state["input_columns"],
st.session_state["label_column"],
st.session_state["labels"],
) = prepare_datasets(dataset)
for split in splits_df:
st.session_state[f"{split}_dataset"] = splits_df[split]
LOGGER.warning(f"FORM {dataset=}")
LOGGER.warning(f"FORM {model=}")
LOGGER.warning(f"FORM {generation_config=}")
with st.expander("Info"):
st.caption("Dataset")
st.write(dataset_info(st.session_state.dataset_name).cardData)
if "http" not in model:
st.caption("Model")
st.write(model_info(model).cardData)
# st.write(f"Model max length: {AutoTokenizer.from_pretrained(model).model_max_length}")
tab1, tab2, tab3 = st.tabs(["Evaluation", "Training Dataset", "Playground"])
with tab1:
with st.form("prompt_form"):
prompt_template = st.text_area("Prompt Template", height=PROMPT_TEXT_HEIGHT)
st.write(f"Labels: {combine_labels(st.session_state.labels)}")
st.write(f"Inputs: {combine_labels(st.session_state.input_columns)}")
col1, col2 = st.columns(2)
with col1:
search_row = st.selectbox(
"Search label at which row", list(SEARCH_ROW_DICT)
)
with col2:
submitted = st.form_submit_button("Evaluate")
if submitted:
if not prompt_template:
st.error("Prompt template must be specified.")
st.stop()
_, formats, *_ = zip(*string.Formatter().parse(prompt_template))
is_valid_prompt_template = set(formats).issubset(
{None} | set(st.session_state.input_columns)
)
if not is_valid_prompt_template:
st.error(f"The prompt template contains unrecognized fields.")
st.stop()
inference_progress = st.progress(0, "Executing inference")
try:
evaluation = run_evaluation(
prompt_template,
st.session_state.test_dataset,
search_row,
st.session_state["generation_config"],
inference_progress,
)
except HfHubHTTPError as e:
st.error(e)
st.stop()
st.metric("Accuracy", f"{100 * evaluation['accuracy']:.0f}%")
st.markdown("## Confusion Matrix")
st.pyplot(evaluation["confusion_matrix_display"])
st.markdown("## Hits and Misses")
st.dataframe(evaluation["hit_miss"])
if evaluation["accuracy"] == 1:
st.balloons()
with tab2:
st.dataframe(st.session_state.train_dataset)
with tab3:
prompt = st.text_area("Prompt", height=PROMPT_TEXT_HEIGHT)
submitted = st.button("Complete")
if submitted:
if not prompt:
st.error("Prompt must be specified.")
st.stop()
with st.spinner("Generating..."):
output, _ = complete(prompt, st.session_state["generation_config"])
st.text(output)