fm / app.py
shlomihod
improve support with local huggingface models
dd27b4a
raw
history blame
31.5 kB
"""Prompter."""
import asyncio
import logging
import os
import string
import importlib
import aiohttp
import cohere
import numpy as np
import pandas as pd
import streamlit as st
from datasets import load_dataset
from datasets.tasks.text_classification import ClassLabel
from huggingface_hub import AsyncInferenceClient, dataset_info, model_info
from huggingface_hub.utils import (
HfHubHTTPError,
HFValidationError,
RepositoryNotFoundError,
)
from imblearn.under_sampling import RandomUnderSampler
from sklearn.metrics import (
ConfusionMatrixDisplay,
accuracy_score,
balanced_accuracy_score,
confusion_matrix,
matthews_corrcoef,
)
from sklearn.model_selection import StratifiedShuffleSplit
from spacy.lang.en import English
from tenacity import retry, stop_after_attempt, wait_random_exponential
from transformers import pipeline
LOGGER = logging.getLogger(__name__)
TITLE = "Prompter"
OPENAI_API_KEY = st.secrets.get("openai_api_key", None)
TOGETHER_API_KEY = st.secrets.get("together_api_key", None)
HF_TOKEN = st.secrets.get("hf_token", None)
COHERE_API_KEY = st.secrets.get("cohere_api_key", None)
AZURE_OPENAI_KEY = st.secrets.get("azure_openai_key", None)
AZURE_OPENAI_ENDPOINT = st.secrets.get("azure_openai_endpoint", None)
AZURE_DEPLOYMENT_NAME = os.environ.get("AZURE_DEPLOYMENT_NAME", None)
HF_MODEL = os.environ.get("FM_MODEL", "")
HF_DATASET = os.environ.get("FM_HF_DATASET", "")
DATASET_SPLIT_SEED = os.environ.get("FM_DATASET_SPLIT_SEED", "")
TRAIN_SIZE = 15
TEST_SIZE = 25
BALANCING = True
RETRY_MIN_WAIT = 10
RETRY_MAX_WAIT = 90
RETRY_MAX_ATTEMPTS = 6
PROMPT_TEXT_HEIGHT = 300
UNKNOWN_LABEL = "Unknown"
SEARCH_ROW_DICT = {"First": 0, "Last": -1}
# TODO: Change start temperature to 0.0 when HF supports it
GENERATION_CONFIG_PARAMS = {
"temperature": {
"NAME": "Temperature",
"START": 0.1,
"END": 5.0,
"DEFAULT": 1.0,
"STEP": 0.1,
"SAMPLING": True,
},
"top_k": {
"NAME": "Top K",
"START": 0,
"END": 100,
"DEFAULT": 0,
"STEP": 10,
"SAMPLING": True,
},
"top_p": {
"NAME": "Top P",
"START": 0.1,
"END": 1.0,
"DEFAULT": 1.0,
"STEP": 0.1,
"SAMPLING": True,
},
"max_new_tokens": {
"NAME": "Max New Tokens",
"START": 16,
"END": 1024,
"DEFAULT": 16,
"STEP": 16,
"SAMPLING": False,
},
"do_sample": {
"NAME": "Sampling",
"DEFAULT": False,
},
"stop_sequences": {
"NAME": "Stop Sequences",
"DEFAULT": os.environ.get("FM_STOP_SEQUENCES", "").split(),
"SAMPLING": False,
},
}
GENERATION_CONFIG_DEFAULTS = {
key: value["DEFAULT"] for key, value in GENERATION_CONFIG_PARAMS.items()
}
st.set_page_config(page_title=TITLE, initial_sidebar_state="collapsed")
def get_processing_tokenizer():
return English().tokenizer
PROCESSING_TOKENIZER = get_processing_tokenizer()
def prepare_huggingface_generation_config(generation_config):
generation_config = generation_config.copy()
# Reference for decoding stratagies:
# https://huggingface.co/docs/transformers/generation_strategies
# `text_generation_interface`
# Currenly supports only `greedy` amd `sampling` decoding strategies
# Following , we add `do_sample` if any of the other
# samling related parameters are set
# https://github.com/huggingface/text-generation-inference/blob/e943a294bca239e26828732dd6ab5b6f95dadd0a/server/text_generation_server/utils/tokens.py#L46
# `transformers`
# According to experimentations, it seems that `transformers` behave similarly
# I'm not sure what is the right behavior here, but it is better to be explicit
for name, params in GENERATION_CONFIG_PARAMS.items():
# Checking for START to examine the a slider parameters only
if (
"START" in params
and params["SAMPLING"]
and name in generation_config
and generation_config[name] is not None
):
if generation_config[name] == params["DEFAULT"]:
generation_config[name] = None
else:
assert generation_config["do_sample"]
return generation_config
def escape_markdown(text):
escape_dict = {
"*": r"\*",
"_": r"\_",
"{": r"\{",
"}": r"\}",
"[": r"\[",
"]": r"\]",
"(": r"\(",
")": r"\)",
"+": r"\+",
"-": r"\-",
".": r"\.",
"!": r"\!",
"`": r"\`",
">": r"\>",
"|": r"\|",
"#": r"\#",
}
return "".join([escape_dict.get(c, c) for c in text])
def build_api_call_function(model):
if model.startswith("openai") or model.startswith("azure"):
openai_lib = importlib.import_module("openai")
if model.startswith("openai"):
openai_lib.api_key = OPENAI_API_KEY
engine = None
elif model.startswith("azure"):
openai_lib.api_key = AZURE_OPENAI_KEY
openai_lib.base = AZURE_OPENAI_ENDPOINT
openai_lib.api_type = "azure"
openai_lib.api_version = "2023-05-15"
engine = AZURE_DEPLOYMENT_NAME
_, model = model.split("/")
openai_models = {
model_obj["id"] for model_obj in openai_lib.Model.list()["data"]
}
assert model in openai_models
@retry(
wait=wait_random_exponential(min=RETRY_MIN_WAIT, max=RETRY_MAX_WAIT),
stop=stop_after_attempt(RETRY_MAX_ATTEMPTS),
reraise=True,
)
async def api_call_function(prompt, generation_config):
if model.startswith("gpt"):
response = await openai_lib.ChatCompletion.acreate(
engine=engine,
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=generation_config["temperature"]
if generation_config["do_sample"]
else 0,
top_p=generation_config["top_p"]
if generation_config["do_sample"]
else 1,
max_tokens=generation_config["max_new_tokens"],
)
assert response["choices"][0]["message"]["role"] == "assistant"
output = response["choices"][0]["message"]["content"]
else:
response = await openai_lib.Completion.acreate(
engine=engine,
model=model,
prompt=prompt,
temperature=generation_config["temperature"],
top_p=generation_config["top_p"],
max_tokens=generation_config["max_new_tokens"],
)
output = response.choices[0].text
try:
length = response.usage.total_tokens
except AttributeError:
length = None
return output, length
elif model.startswith("togethercomputer"):
TOGETHER_API_ENDPOINT = "https://api.together.xyz/inference"
@retry(
wait=wait_random_exponential(min=RETRY_MIN_WAIT, max=RETRY_MAX_WAIT),
stop=stop_after_attempt(RETRY_MAX_ATTEMPTS),
reraise=True,
)
async def api_call_function(prompt, generation_config):
headers = {
"Authorization": f"Bearer {TOGETHER_API_KEY}",
"User-Agent": "FM",
}
payload = {
"temperature": generation_config["temperature"]
if generation_config["do_sample"]
else 0,
"top_p": generation_config["top_p"]
if generation_config["do_sample"]
else 1,
"top_k": generation_config["top_k"]
if generation_config["do_sample"]
else 0,
"max_tokens": generation_config["max_new_tokens"],
"prompt": prompt,
"model": model,
"stop": generation_config["stop_sequences"],
}
LOGGER.info(f"{payload=}")
async with aiohttp.ClientSession() as session:
async with session.post(
TOGETHER_API_ENDPOINT, json=payload, headers=headers
) as response:
output = (await response.json())["output"]["choices"][0]["text"]
length = None
return output, length
elif model.startswith("cohere"):
co = cohere.Client(COHERE_API_KEY)
_, model = model.split("/")
@retry(
wait=wait_random_exponential(min=RETRY_MIN_WAIT, max=RETRY_MAX_WAIT),
stop=stop_after_attempt(RETRY_MAX_ATTEMPTS),
reraise=True,
)
def api_call_function(prompt, generation_config):
response = co.generate(
model=model,
prompt=prompt,
temperature=generation_config["temperature"]
if generation_config["do_sample"]
else 0,
p=generation_config["top_p"] if generation_config["do_sample"] else 1,
k=generation_config["top_k"] if generation_config["do_sample"] else 0,
max_tokens=generation_config["max_new_tokens"],
end_sequences=generation_config["stop_sequences"],
)
output = response.generations[0].text
length = None
return output, length
elif model.startswith("@"):
model = model[1:]
pipe = pipeline(
"text-generation", model=model, trust_remote_code=True, device_map="auto"
)
async def api_call_function(prompt, generation_config):
generation_config = prepare_huggingface_generation_config(generation_config)
output = pipe(prompt, return_text=True, **generation_config)[0][
"generated_text"
]
output = output[len(prompt) :]
length = None
return output, length
else:
@retry(
wait=wait_random_exponential(min=RETRY_MIN_WAIT, max=RETRY_MAX_WAIT),
stop=stop_after_attempt(RETRY_MAX_ATTEMPTS),
reraise=True,
)
async def api_call_function(prompt, generation_config):
hf_client = AsyncInferenceClient(token=HF_TOKEN, model=model)
generation_config = prepare_huggingface_generation_config(generation_config)
response = await hf_client.text_generation(
prompt, stream=False, details=True, **generation_config
)
LOGGER.info(response)
length = len(response.details.prefill) + len(response.details.tokens)
output = response.generated_text
# response = st.session_state.client.post(json={"inputs": prompt})
# output = response.json()[0]["generated_text"]
# output = st.session_state.client.conversational(prompt, model=model)
# output = output if "https" in st.session_state.client.model else output[len(prompt) :]
# Remove stop sequences from the output
# Inspired by
# https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/inference.py
# https://huggingface.co/spaces/tiiuae/falcon-chat/blob/main/app.py
if (
"stop_sequences" in generation_config
and generation_config["stop_sequences"] is not None
):
for stop_sequence in generation_config["stop_sequences"]:
output = output.rsplit(stop_sequence, maxsplit=1)[0]
return output, length
return api_call_function
def strip_newline_space(text):
return text.strip("\n").strip()
def normalize(text):
return strip_newline_space(text).lower().capitalize()
def prepare_datasets(
dataset_name,
take_split="train",
train_size=TRAIN_SIZE,
test_size=TEST_SIZE,
balancing=BALANCING,
dataset_split_seed=None,
):
try:
ds = load_dataset(dataset_name)
except FileNotFoundError as e:
try:
assert "/" in dataset_name
dataset_name, subset_name = dataset_name.rsplit("/", 1)
ds = load_dataset(dataset_name, subset_name)
except (FileNotFoundError, AssertionError):
st.error(f"Dataset `{dataset_name}` not found.")
st.stop()
label_columns = [
(name, info)
for name, info in ds["train"].features.items()
if isinstance(info, ClassLabel)
]
assert len(label_columns) == 1
label_column, label_column_info = label_columns[0]
labels = [normalize(label) for label in label_column_info.names]
label_dict = dict(enumerate(labels))
if any(len(PROCESSING_TOKENIZER(label)) > 1 for label in labels):
st.error(
"Labels are not single words. "
"Matching labels won't not work as expected."
)
original_input_columns = [
name
for name, info in ds["train"].features.items()
if not isinstance(info, ClassLabel) and info.dtype == "string"
]
input_columns = []
for input_column in original_input_columns:
lowered_input_column = input_column.lower()
if input_column != lowered_input_column:
ds = ds.rename_column(input_column, lowered_input_column)
input_columns.append(lowered_input_column)
df = ds[take_split].to_pandas()
for input_column in input_columns:
df[input_column] = df[input_column].apply(strip_newline_space)
df[label_column] = df[label_column].replace(label_dict)
df = df[[label_column] + input_columns]
if train_size is not None and test_size is not None:
undersample = RandomUnderSampler(
sampling_strategy="not minority", random_state=dataset_split_seed
)
df, df[label_column] = undersample.fit_resample(df, df[label_column])
sss = StratifiedShuffleSplit(
n_splits=1,
train_size=train_size,
test_size=test_size,
random_state=dataset_split_seed,
)
train_index, test_index = next(iter(sss.split(df, df[label_column])))
train_df = df.iloc[train_index]
test_df = df.iloc[test_index]
dfs = {"train": train_df, "test": test_df}
else:
dfs = {take_split: df}
return dataset_name, dfs, input_columns, label_column, labels
async def complete(api_call_function, prompt, generation_config=None):
if generation_config is None:
generation_config = {}
LOGGER.info(f"API Call\n\n``{prompt}``\n\n{generation_config=}")
output, length = await api_call_function(prompt, generation_config)
return output, length
async def infer(api_call_function, prompt_template, inputs, generation_config=None):
prompt = prompt_template.format(**inputs)
output, length = await complete(api_call_function, prompt, generation_config)
return output, prompt, length
async def infer_multi(
api_call_function, prompt_template, inputs_df, generation_config=None
):
results = await asyncio.gather(
*(
infer(
api_call_function, prompt_template, inputs.to_dict(), generation_config
)
for _, inputs in inputs_df.iterrows()
)
)
return zip(*results)
def preprocess_output_line(text):
return [
normalize(token_str)
for token in PROCESSING_TOKENIZER(text)
if (token_str := str(token))
]
# Inspired by OpenAI depcriated classification endpoint API
# They take the label from the first line of the output
# https://github.com/openai/openai-cookbook/blob/main/transition_guides_for_deprecated_API_endpoints/classification_functionality_example.py
# https://help.openai.com/en/articles/6272941-classifications-transition-guide#h_e63b71a5c8
# Here we take the label from either the *first* or *last* (for CoT) line of the output
# This is not very robust, but it's a start that doesn't requires asking for a structured output such as JSON
# HELM has more robust processing options, we are not using them, but these are the references:
# https://github.com/stanford-crfm/helm/blob/04a75826ce75835f6d22a7d41ae1487104797964/src/helm/benchmark/metrics/classification_metrics.py
# https://github.com/stanford-crfm/helm/blob/04a75826ce75835f6d22a7d41ae1487104797964/src/helm/benchmark/metrics/basic_metrics.py
def canonize_label(output, annotation_labels, search_row):
assert search_row in SEARCH_ROW_DICT.keys()
search_row_index = SEARCH_ROW_DICT[search_row]
annotation_labels_set = set(annotation_labels)
output_lines = strip_newline_space(output).split("\n")
output_search_words = preprocess_output_line(output_lines[search_row_index])
label_matches = set(output_search_words) & annotation_labels_set
if len(label_matches) == 1:
return next(iter(label_matches))
else:
return UNKNOWN_LABEL
def measure(dataset, outputs, labels, label_column, input_columns, search_row):
inferences = [canonize_label(output, labels, search_row) for output in outputs]
LOGGER.info(f"{inferences=}")
LOGGER.info(f"{labels=}")
inference_labels = labels + [UNKNOWN_LABEL]
evaluation_df = pd.DataFrame(
{
"hit/miss": np.where(dataset[label_column] == inferences, "hit", "miss"),
"annotation": dataset[label_column],
"inference": inferences,
"output": outputs,
}
| dataset[input_columns].to_dict("list")
)
unknown_proportion = (evaluation_df["inference"] == UNKNOWN_LABEL).mean()
acc = accuracy_score(evaluation_df["annotation"], evaluation_df["inference"])
bacc = balanced_accuracy_score(
evaluation_df["annotation"], evaluation_df["inference"]
)
mcc = matthews_corrcoef(evaluation_df["annotation"], evaluation_df["inference"])
cm = confusion_matrix(
evaluation_df["annotation"], evaluation_df["inference"], labels=inference_labels
)
cm_display = ConfusionMatrixDisplay(cm, display_labels=inference_labels)
cm_display.plot()
cm_display.ax_.set_xlabel("Inference Labels")
cm_display.ax_.set_ylabel("Annotation Labels")
cm_display.figure_.autofmt_xdate(rotation=45)
metrics = {
"unknown_proportion": unknown_proportion,
"accuracy": acc,
"balanced_accuracy": bacc,
"mcc": mcc,
"confusion_matrix": cm,
"confusion_matrix_display": cm_display.figure_,
"hit_miss": evaluation_df,
"annotation_labels": labels,
"inference_labels": inference_labels,
}
return metrics
def run_evaluation(
api_call_function,
prompt_template,
dataset,
labels,
label_column,
input_columns,
search_row,
generation_config=None,
):
inputs_df = dataset[input_columns]
outputs, prompts, lengths = asyncio.run(
infer_multi(
api_call_function,
prompt_template,
inputs_df,
generation_config,
)
)
metrics = measure(dataset, outputs, labels, label_column, input_columns, search_row)
metrics["hit_miss"]["prompt"] = prompts
metrics["hit_miss"]["length"] = lengths
return metrics
def combine_labels(labels):
return "|".join(f"``{label}``" for label in labels)
def main():
try:
if "dataset_split_seed" not in st.session_state:
st.session_state["dataset_split_seed"] = (
int(DATASET_SPLIT_SEED) if DATASET_SPLIT_SEED else None
)
if "train_size" not in st.session_state:
st.session_state["train_size"] = TRAIN_SIZE
if "test_size" not in st.session_state:
st.session_state["test_size"] = TEST_SIZE
if "api_call_function" not in st.session_state:
st.session_state["api_call_function"] = build_api_call_function(
model=HF_MODEL,
)
if "train_dataset" not in st.session_state:
(
st.session_state["dataset_name"],
splits_df,
st.session_state["input_columns"],
st.session_state["label_column"],
st.session_state["labels"],
) = prepare_datasets(
HF_DATASET,
train_size=st.session_state.train_size,
test_size=st.session_state.test_size,
dataset_split_seed=st.session_state.dataset_split_seed,
)
for split in splits_df:
st.session_state[f"{split}_dataset"] = splits_df[split]
if "generation_config" not in st.session_state:
st.session_state["generation_config"] = GENERATION_CONFIG_DEFAULTS
except Exception as e:
st.error(e)
st.title(TITLE)
with st.sidebar:
with st.form("model_form"):
model = st.text_input("Model", HF_MODEL).strip()
# Defautlt values from:
# https://huggingface.co/docs/transformers/v4.30.0/main_classes/text_generation
# Edges values from:
# https://docs.cohere.com/reference/generate
# https://platform.openai.com/playground
generation_config_sliders = {
name: st.slider(
params["NAME"],
params["START"],
params["END"],
params["DEFAULT"],
params["STEP"],
)
for name, params in GENERATION_CONFIG_PARAMS.items()
if "START" in params
}
do_sample = st.checkbox(
GENERATION_CONFIG_PARAMS["do_sample"]["NAME"],
value=GENERATION_CONFIG_PARAMS["do_sample"]["DEFAULT"],
)
stop_sequences = st.text_area(
GENERATION_CONFIG_PARAMS["stop_sequences"]["NAME"],
value="\n".join(GENERATION_CONFIG_PARAMS["stop_sequences"]["DEFAULT"]),
)
stop_sequences = [
clean_stop.encode().decode("unicode_escape") # interpret \n as newline
for stop in stop_sequences.split("\n")
if (clean_stop := stop.strip())
]
if not stop_sequences:
stop_sequences = None
decoding_seed = st.text_input("Decoding Seed").strip()
st.divider()
dataset = st.text_input("Dataset", HF_DATASET).strip()
train_size = st.number_input("Train Size", value=TRAIN_SIZE, min_value=10)
test_size = st.number_input("Test Size", value=TEST_SIZE, min_value=10)
balancing = st.checkbox("Balancing", BALANCING)
dataset_split_seed = st.text_input(
"Dataset Split Seed", DATASET_SPLIT_SEED
).strip()
st.divider()
submitted = st.form_submit_button("Set")
if submitted:
if not dataset:
st.error("Dataset must be specified.")
st.stop()
if not model:
st.error("Model must be specified.")
st.stop()
if not decoding_seed:
decoding_seed = None
elif seed.isnumeric():
decoding_seed = int(seed)
else:
st.error("Seed must be numeric or empty.")
st.stop()
generation_confing_slider_sampling = {
name: value
for name, value in generation_config_sliders.items()
if GENERATION_CONFIG_PARAMS[name]["SAMPLING"]
}
if (
any(
value != GENERATION_CONFIG_DEFAULTS[name]
for name, value in generation_confing_slider_sampling.items()
)
and not do_sample
):
sampling_slider_default_values_info = " | ".join(
f"{name}={GENERATION_CONFIG_DEFAULTS[name]}"
for name in generation_confing_slider_sampling
)
st.error(
f"Sampling must be enabled to use non default values for generation parameters: {sampling_slider_default_values_info}"
)
st.stop()
if decoding_seed is not None and not do_sample:
st.error(
"Sampling must be enabled to use a decoding seed. Otherwise, the seed field should be empty."
)
st.stop()
if not dataset_split_seed:
dataset_split_seed = None
elif dataset_split_seed.isnumeric():
dataset_split_seed = int(dataset_split_seed)
else:
st.error("Dataset split seed must be numeric or empty.")
st.stop()
generation_config = generation_config_sliders | dict(
do_sample=do_sample,
stop_sequences=stop_sequences,
seed=decoding_seed,
)
st.session_state["dataset_split_seed"] = dataset_split_seed
st.session_state["train_size"] = train_size
st.session_state["test_size"] = test_size
st.session_state["api_call_function"] = build_api_call_function(
model=model,
)
st.session_state["generation_config"] = generation_config
(
st.session_state["dataset_name"],
splits_df,
st.session_state["input_columns"],
st.session_state["label_column"],
st.session_state["labels"],
) = prepare_datasets(
dataset,
train_size=st.session_state.train_size,
test_size=st.session_state.test_size,
balancing=balancing,
dataset_split_seed=st.session_state.dataset_split_seed,
)
for split in splits_df:
st.session_state[f"{split}_dataset"] = splits_df[split]
LOGGER.info(f"FORM {dataset=}")
LOGGER.info(f"FORM {model=}")
LOGGER.info(f"FORM {generation_config=}")
with st.expander("Info"):
try:
data_card = dataset_info(st.session_state.dataset_name).cardData
except (HFValidationError, RepositoryNotFoundError):
pass
else:
st.caption("Dataset")
st.write(data_card)
try:
model_card = model_info(model).cardData
except (HFValidationError, RepositoryNotFoundError):
pass
else:
st.caption("Model")
st.write(model_card)
# st.write(f"Model max length: {AutoTokenizer.from_pretrained(model).model_max_length}")
tab1, tab2, tab3 = st.tabs(["Evaluation", "Examples", "Playground"])
with tab1:
with st.form("prompt_form"):
prompt_template = st.text_area("Prompt Template", height=PROMPT_TEXT_HEIGHT)
st.write(f"Labels: {combine_labels(st.session_state.labels)}")
st.write(f"Inputs: {combine_labels(st.session_state.input_columns)}")
col1, col2 = st.columns(2)
with col1:
search_row = st.selectbox(
"Search label at which row", list(SEARCH_ROW_DICT)
)
with col2:
submitted = st.form_submit_button("Evaluate")
if submitted:
if not prompt_template:
st.error("Prompt template must be specified.")
st.stop()
_, formats, *_ = zip(*string.Formatter().parse(prompt_template))
is_valid_prompt_template = set(formats).issubset(
{None} | set(st.session_state.input_columns)
)
if not is_valid_prompt_template:
st.error(f"The prompt template contains unrecognized fields.")
st.stop()
with st.spinner("Executing inference..."):
try:
evaluation = run_evaluation(
st.session_state.api_call_function,
prompt_template,
st.session_state.test_dataset,
st.session_state.labels,
st.session_state.label_column,
st.session_state.input_columns,
search_row,
st.session_state.generation_config,
)
except HfHubHTTPError as e:
st.error(e)
st.stop()
num_metric_cols = 2 if balancing else 4
cols = st.columns(num_metric_cols)
with cols[0]:
st.metric("Accuracy", f"{100 * evaluation['accuracy']:.0f}%")
with cols[1]:
st.metric(
"Unknown Proportion",
f"{100 * evaluation['unknown_proportion']:.0f}%",
)
if not balancing:
with cols[2]:
st.metric(
"Balanced Accuracy",
f"{100 * evaluation['balanced_accuracy']:.0f}%",
)
with cols[3]:
st.metric("MCC", f"{evaluation['mcc']:.2f}")
st.markdown("## Confusion Matrix")
st.pyplot(evaluation["confusion_matrix_display"])
st.markdown("## Hits and Misses")
st.dataframe(evaluation["hit_miss"])
if evaluation["accuracy"] == 1:
st.balloons()
with tab2:
st.dataframe(st.session_state.train_dataset)
with tab3:
prompt = st.text_area("Prompt", height=PROMPT_TEXT_HEIGHT)
submitted = st.button("Complete")
if submitted:
if not prompt:
st.error("Prompt must be specified.")
st.stop()
with st.spinner("Generating..."):
try:
output, length = asyncio.run(
complete(
st.session_state.api_call_function,
prompt,
st.session_state.generation_config,
)
)
except HfHubHTTPError as e:
st.error(e)
st.stop()
st.markdown(escape_markdown(output))
if length is not None:
with st.expander("Stats"):
st.metric("#Tokens", length)
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
main()