File size: 1,403 Bytes
a21b696
 
 
 
 
 
3771205
2c92f73
 
35b45c1
2c92f73
 
 
 
 
 
3771205
2c92f73
 
 
 
 
3771205
2c92f73
3771205
35b45c1
a21b696
 
565830f
a21b696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e089c37
a21b696
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from huggingface_hub import hf_hub_download

import gradio as gr
import model
import torch

gr.Info(f"⏳ Downloading model from huggingface hub...")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.BEN_Base().to(device).eval() #init pipeline

# 从 Hugging Face 下载模型
model_path = hf_hub_download(
    repo_id="PramaLLC/BEN",
    filename="BEN_Base.pth",
    cache_dir="./models"  # 缓存目录,避免重复下载
)
gr.Info(f"✅ Model downloaded successfully to {model_path}")
model.loadcheckpoints(model_path)



def handler(input_image):  
    gr.Info("🚀 Processing image...")
    mask, foreground = model.inference(input_image)
    gr.Info("✅ Image processing completed!")

    return [mask, foreground]


# 创建 Gradio 界面
def create_interface():
    with gr.Blocks() as demo:
        with gr.Row():
            input_image = gr.Image(type="pil", label="Input Image")
            with gr.Column():
                output_mask = gr.Image(type="pil", label="Mask")
                output_foreground = gr.Image(type="pil", label="Foreground")
        
        submit_btn = gr.Button("Process Image")
        submit_btn.click(
            fn=handler,
            inputs=[input_image],
            outputs=[output_mask, output_foreground]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()