ben1 / model.py
qinzheng_wang
feat: init
a21b696
raw
history blame
37.8 kB
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from einops import rearrange
from PIL import Image, ImageFilter, ImageOps
from timm.layers import DropPath, to_2tuple, trunc_normal_
from torchvision import transforms
class Mlp(nn.Module):
""" Multilayer perceptron."""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
""" Forward function.
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwinTransformerBlock(nn.Module):
""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, num_heads, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.H = None
self.W = None
def forward(self, x, mask_matrix):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
mask_matrix: Attention mask for cyclic shift.
"""
B, L, C = x.shape
H, W = self.H, self.W
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# pad feature maps to multiples of window size
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchMerging(nn.Module):
""" Patch Merging Layer
Args:
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x, H, W):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C)
# padding
pad_input = (H % 2 == 1) or (W % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of feature channels
depth (int): Depths of this stage.
num_heads (int): Number of attention head.
window_size (int): Local window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self,
dim,
depth,
num_heads,
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False):
super().__init__()
self.window_size = window_size
self.shift_size = window_size // 2
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(
dim=dim,
num_heads=num_heads,
window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x, H, W):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
# calculate attention mask for SW-MSA
Hp = int(np.ceil(H / self.window_size)) * self.window_size
Wp = int(np.ceil(W / self.window_size)) * self.window_size
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
for blk in self.blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, attn_mask)
else:
x = blk(x, attn_mask)
if self.downsample is not None:
x_down = self.downsample(x, H, W)
Wh, Ww = (H + 1) // 2, (W + 1) // 2
return x, H, W, x_down, Wh, Ww
else:
return x, H, W, x, H, W
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
Args:
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, H, W = x.size()
if W % self.patch_size[1] != 0:
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
if H % self.patch_size[0] != 0:
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
x = self.proj(x) # B C Wh Ww
if self.norm is not None:
Wh, Ww = x.size(2), x.size(3)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
return x
class SwinTransformer(nn.Module):
""" Swin Transformer backbone.
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
pretrain_img_size (int): Input image size for training the pretrained model,
used in absolute postion embedding. Default 224.
patch_size (int | tuple(int)): Patch size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
depths (tuple[int]): Depths of each Swin Transformer stage.
num_heads (tuple[int]): Number of attention head of each stage.
window_size (int): Window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
drop_rate (float): Dropout rate.
attn_drop_rate (float): Attention dropout rate. Default: 0.
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
out_indices (Sequence[int]): Output from which stages.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self,
pretrain_img_size=224,
patch_size=4,
in_chans=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
use_checkpoint=False):
super().__init__()
self.pretrain_img_size = pretrain_img_size
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.out_indices = out_indices
self.frozen_stages = frozen_stages
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
# absolute position embedding
if self.ape:
pretrain_img_size = to_2tuple(pretrain_img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2 ** i_layer),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint)
self.layers.append(layer)
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
self.num_features = num_features
# add a norm layer for each output
for i_layer in out_indices:
layer = norm_layer(num_features[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
self._freeze_stages()
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.frozen_stages >= 1 and self.ape:
self.absolute_pos_embed.requires_grad = False
if self.frozen_stages >= 2:
self.pos_drop.eval()
for i in range(0, self.frozen_stages - 1):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def forward(self, x):
x = self.patch_embed(x)
Wh, Ww = x.size(2), x.size(3)
if self.ape:
# interpolate the position embedding to the corresponding size
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
x = (x + absolute_pos_embed) # B Wh*Ww C
outs = [x.contiguous()]
x = x.flatten(2).transpose(1, 2)
x = self.pos_drop(x)
for i in range(self.num_layers):
layer = self.layers[i]
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
x_out = norm_layer(x_out)
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
outs.append(out)
return tuple(outs)
def get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "gelu":
return F.gelu
raise RuntimeError(F"activation should be gelu, not {activation}.")
def make_cbr(in_dim, out_dim):
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU())
def make_cbg(in_dim, out_dim):
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU())
def rescale_to(x, scale_factor: float = 2, interpolation='nearest'):
return F.interpolate(x, scale_factor=scale_factor, mode=interpolation)
def resize_as(x, y, interpolation='bilinear'):
return F.interpolate(x, size=y.shape[-2:], mode=interpolation)
def image2patches(x):
"""b c (hg h) (wg w) -> (hg wg b) c h w"""
x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
return x
def patches2image(x):
"""(hg wg b) c h w -> b c (hg h) (wg w)"""
x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
return x
class PositionEmbeddingSine:
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
self.dim_t = torch.arange(0, self.num_pos_feats, dtype=torch.float32)
def __call__(self, b, h, w):
device = self.dim_t.device
mask = torch.zeros([b, h, w], dtype=torch.bool, device=device)
assert mask is not None
not_mask = ~mask
y_embed = not_mask.cumsum(dim=1, dtype=torch.float32)
x_embed = not_mask.cumsum(dim=2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = self.temperature ** (2 * (self.dim_t.to(device) // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
class MCLM(nn.Module):
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
super(MCLM, self).__init__()
self.attention = nn.ModuleList([
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
])
self.linear1 = nn.Linear(d_model, d_model * 2)
self.linear2 = nn.Linear(d_model * 2, d_model)
self.linear3 = nn.Linear(d_model, d_model * 2)
self.linear4 = nn.Linear(d_model * 2, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
self.dropout1 = nn.Dropout(0.1)
self.dropout2 = nn.Dropout(0.1)
self.activation = get_activation_fn('gelu')
self.pool_ratios = pool_ratios
self.p_poses = []
self.g_pos = None
self.positional_encoding = PositionEmbeddingSine(num_pos_feats=d_model // 2, normalize=True)
def forward(self, l, g):
"""
l: 4,c,h,w
g: 1,c,h,w
"""
b, c, h, w = l.size()
# 4,c,h,w -> 1,c,2h,2w
concated_locs = rearrange(l, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
pools = []
for pool_ratio in self.pool_ratios:
# b,c,h,w
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
if self.g_pos is None:
pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2], pool.shape[3])
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
self.p_poses.append(pos_emb)
pools = torch.cat(pools, 0)
if self.g_pos is None:
self.p_poses = torch.cat(self.p_poses, dim=0)
pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3])
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
device = pools.device
self.p_poses = self.p_poses.to(device)
self.g_pos = self.g_pos.to(device)
# attention between glb (q) & multisensory concated-locs (k,v)
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
g_hw_b_c = self.norm1(g_hw_b_c)
g_hw_b_c = g_hw_b_c + self.dropout2(self.linear2(self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
g_hw_b_c = self.norm2(g_hw_b_c)
# attention between origin locs (q) & freashed glb (k,v)
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
_g_hw_b_c = rearrange(_g_hw_b_c, "(ng h) (nw w) b c -> (h w) (ng nw b) c", ng=2, nw=2)
outputs_re = []
for i, (_l, _g) in enumerate(zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
outputs_re.append(self.attention[i + 1](_l, _g, _g)[0]) # (h w) 1 c
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
l_hw_b_c = self.norm1(l_hw_b_c)
l_hw_b_c = l_hw_b_c + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
l_hw_b_c = self.norm2(l_hw_b_c)
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
class MCRM(nn.Module):
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
super(MCRM, self).__init__()
self.attention = nn.ModuleList([
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
])
self.linear3 = nn.Linear(d_model, d_model * 2)
self.linear4 = nn.Linear(d_model * 2, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
self.dropout1 = nn.Dropout(0.1)
self.dropout2 = nn.Dropout(0.1)
self.sigmoid = nn.Sigmoid()
self.activation = get_activation_fn('gelu')
self.sal_conv = nn.Conv2d(d_model, 1, 1)
self.pool_ratios = pool_ratios
def forward(self, x):
device = x.device
b, c, h, w = x.size()
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
patched_glb = rearrange(glb, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
token_attention_map = self.sigmoid(self.sal_conv(glb))
token_attention_map = F.interpolate(token_attention_map, size=patches2image(loc).shape[-2:], mode='nearest')
loc = loc * rearrange(token_attention_map, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
pools = []
for pool_ratio in self.pool_ratios:
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
pools.append(rearrange(pool, 'nl c h w -> nl c (h w)')) # nl(4),c,hw
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
outputs = []
for i, q in enumerate(loc_.unbind(dim=0)): # traverse all local patches
v = pools[i]
k = v
outputs.append(self.attention[i](q, k, v)[0])
outputs = torch.cat(outputs, 1)
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
src = self.norm1(src)
src = src + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(src)).clone())))
src = self.norm2(src)
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
glb = glb + F.interpolate(patches2image(src), size=glb.shape[-2:], mode='nearest') # freshed glb
return torch.cat((src, glb), 0), token_attention_map
class BEN_Base(nn.Module):
def __init__(self):
super().__init__()
self.backbone = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
emb_dim = 128
self.sideout5 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout4 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout3 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout2 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout1 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.output5 = make_cbr(1024, emb_dim)
self.output4 = make_cbr(512, emb_dim)
self.output3 = make_cbr(256, emb_dim)
self.output2 = make_cbr(128, emb_dim)
self.output1 = make_cbr(128, emb_dim)
self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8])
self.conv1 = make_cbr(emb_dim, emb_dim)
self.conv2 = make_cbr(emb_dim, emb_dim)
self.conv3 = make_cbr(emb_dim, emb_dim)
self.conv4 = make_cbr(emb_dim, emb_dim)
self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8])
self.insmask_head = nn.Sequential(
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
nn.InstanceNorm2d(384),
nn.GELU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1),
nn.InstanceNorm2d(384),
nn.GELU(),
nn.Conv2d(384, emb_dim, kernel_size=3, padding=1)
)
self.shallow = nn.Sequential(nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
self.upsample1 = make_cbg(emb_dim, emb_dim)
self.upsample2 = make_cbg(emb_dim, emb_dim)
self.output = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
for m in self.modules():
if isinstance(m, nn.GELU) or isinstance(m, nn.Dropout):
m.inplace = True
def forward(self, x):
device = x.device
shallow = self.shallow(x)
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
loc = image2patches(x)
input = torch.cat((loc, glb), dim=0)
feature = self.backbone(input)
e5 = self.output5(feature[4]) # (5,128,16,16)
e4 = self.output4(feature[3]) # (5,128,32,32)
e3 = self.output3(feature[2]) # (5,128,64,64)
e2 = self.output2(feature[1]) # (5,128,128,128)
e1 = self.output1(feature[0]) # (5,128,128,128)
loc_e5, glb_e5 = e5.split([4, 1], dim=0)
e5 = self.multifieldcrossatt(loc_e5, glb_e5) # (4,128,16,16)
e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4))
e4 = self.conv4(e4)
e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3))
e3 = self.conv3(e3)
e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2))
e2 = self.conv2(e2)
e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1))
e1 = self.conv1(e1)
loc_e1, glb_e1 = e1.split([4, 1], dim=0)
output1_cat = patches2image(loc_e1) # (1,128,256,256)
output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
final_output = self.insmask_head(output1_cat) # (1,128,256,256)
final_output = final_output + resize_as(shallow, final_output)
final_output = self.upsample1(rescale_to(final_output))
final_output = rescale_to(final_output + resize_as(shallow, final_output))
final_output = self.upsample2(final_output)
final_output = self.output(final_output)
return final_output.sigmoid()
@torch.no_grad()
def inference(self,image):
image, h, w,original_image = rgb_loader_refiner(image)
img_tensor = img_transform(image).unsqueeze(0).to(next(self.parameters()).device)
res = self.forward(img_tensor)
pred_array = postprocess_image(res, im_size=[w, h])
mask_image = Image.fromarray(pred_array, mode='L')
blurred_mask = mask_image.filter(ImageFilter.GaussianBlur(radius=1))
original_image_rgba = original_image.convert("RGBA")
foreground = original_image_rgba.copy()
foreground.putalpha(blurred_mask)
return blurred_mask, foreground
def loadcheckpoints(self,model_path):
model_dict = torch.load(model_path, map_location="cpu", weights_only=True)
self.load_state_dict(model_dict['model_state_dict'], strict=True)
del model_path
def rgb_loader_refiner( original_image):
h, w = original_image.size
# # Apply EXIF orientation
image = ImageOps.exif_transpose(original_image)
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize the image
image = image.resize((1024, 1024), resample=Image.LANCZOS)
return image.convert('RGB'), h, w,original_image
# Define the image transformation
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.ConvertImageDtype(torch.float32),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray:
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear'), 0)
ma = torch.max(result)
mi = torch.min(result)
result = (result - mi) / (ma - mi)
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8)
im_array = np.squeeze(im_array)
return im_array