shresht8's picture
update app - extract likes/dislikes
50fe41a verified
import gradio as gr
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import plotly.express as px
import plotly.graph_objects as go
from collections import defaultdict
from openai import OpenAI
from pydantic import BaseModel, Field, field_validator, ValidationInfo
from typing import Optional, Dict, Any, List, Annotated
from instructor import patch
import instructor
from prompts import sentiments_prompt
# Load model and tokenizer globally for efficiency
model_name = "tabularisai/multilingual-sentiment-analysis"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Define sentiment weights for score calculation
SENTIMENT_WEIGHTS = {
0: 0.0, # Very Negative
1: 0.25, # Negative
2: 0.5, # Neutral
3: 0.75, # Positive
4: 1.0 # Very Positive
}
class ExtractProductSentiment(BaseModel):
"""Extracts what people like and dislike about a product based on product reviews and sentiment scores (0-100)"""
product_likes: List[str] = Field(..., description="What people like about the product. List of 3 sentences AT MOST. Must be aggregated in the order of importance.")
product_dislikes: List[str] = Field(..., description="What people dislike about the product. List of 3 sentences AT MOST. Must be aggregated in the order of importance.")
@field_validator("product_likes", "product_dislikes")
def validate_product_likes_and_dislikes(cls, v, info: ValidationInfo):
if not v:
raise ValueError(f"At least one {info.field_name} must be provided. If nothing to say, please enter 'None'")
if len(v) > 3:
raise ValueError(
f"{info.field_name} contains {len(v)} points. Please aggregate the points to a maximum of 3 key points "
"in order of importance. Combine similar points together."
)
return v
def predict_sentiment_with_scores(texts):
"""
Predict sentiment for a list of texts and return both class labels and sentiment scores
"""
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get predicted classes
sentiment_map = {
0: "Very Negative",
1: "Negative",
2: "Neutral",
3: "Positive",
4: "Very Positive"
}
predicted_classes = [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]
# Calculate sentiment scores (0-100)
sentiment_scores = []
for prob in probabilities:
# Weighted sum of probabilities
score = sum(prob[i].item() * SENTIMENT_WEIGHTS[i] for i in range(len(prob)))
# Scale to 0-100
sentiment_scores.append(round(score * 100, 2))
return predicted_classes, sentiment_scores
#patch() # Patch OpenAI client to support response models
def get_product_sentiment(client, reviews: List[str], scores: List[float]) -> ExtractProductSentiment:
"""Extract product likes and dislikes using OpenAI"""
# Combine reviews and scores for context
review_context = "\n".join([f"Review (Score: {score}): {review}"
for review, score in zip(reviews, scores)])
#client = instructor.patch(OpenAI(api_key=openai_api_key))
prompt = sentiments_prompt.format(review_context=review_context)
response = client.chat.completions.create(
model="gpt-4o",
response_model=ExtractProductSentiment,
messages=[
{"role": "system", "content": "You are a helpful product analyst."},
{"role": "user", "content": prompt}
],
max_retries=3
)
return response
def create_comparison_charts(sentiment_results, avg_sentiment_scores):
"""
Create comparison charts for sentiment analysis across products
"""
# Create summary DataFrame
summary_data = []
for product in sentiment_results.keys():
counts = sentiment_results[product]
total = counts.sum()
row = {
'Product': product,
'Average Sentiment Score': avg_sentiment_scores[product],
'Total Reviews': total,
'Very Positive %': round((counts.get('Very Positive', 0) / total) * 100, 2),
'Positive %': round((counts.get('Positive', 0) / total) * 100, 2),
'Neutral %': round((counts.get('Neutral', 0) / total) * 100, 2),
'Negative %': round((counts.get('Negative', 0) / total) * 100, 2),
'Very Negative %': round((counts.get('Very Negative', 0) / total) * 100, 2)
}
summary_data.append(row)
summary_df = pd.DataFrame(summary_data)
# Score comparison chart
score_comparison_fig = px.bar(
summary_df,
x='Product',
y='Average Sentiment Score',
title='Average Sentiment Scores by Product',
labels={'Average Sentiment Score': 'Score (0-100)'}
)
# Distribution chart
distribution_data = []
for product in sentiment_results.keys():
counts = sentiment_results[product]
# Aggregate positive and negative sentiments
aggregated_counts = {
'Positive': counts.get('Very Positive', 0) + counts.get('Positive', 0),
'Neutral': counts.get('Neutral', 0),
'Negative': counts.get('Very Negative', 0) + counts.get('Negative', 0)
}
for sentiment, count in aggregated_counts.items():
distribution_data.append({
'Product': product,
'Sentiment': sentiment,
'Count': count
})
distribution_df = pd.DataFrame(distribution_data)
distribution_fig = px.bar(
distribution_df,
x='Product',
y='Count',
color='Sentiment',
title='Sentiment Distribution by Product',
barmode='group',
color_discrete_map={
'Positive': '#2ECC71', # Green
'Neutral': '#F1C40F', # Yellow
'Negative': '#E74C3C' # Red
}
)
# Ratio chart (percentage stacked bar)
ratio_fig = px.bar(
distribution_df,
x='Product',
y='Count',
color='Sentiment',
title='Sentiment Distribution Ratio by Product',
barmode='relative'
)
return score_comparison_fig, distribution_fig, ratio_fig, summary_df
def process_single_sheet(df, product_name, openai_client):
"""
Process a single dataframe and return sentiment analysis results
"""
if 'Reviews' not in df.columns:
raise ValueError(f"'Reviews' column not found in sheet/file for {product_name}")
reviews = df['Reviews'].fillna("")
sentiments, scores = predict_sentiment_with_scores(reviews.tolist())
df['Sentiment'] = sentiments
df['Sentiment_Score'] = scores
# Extract product likes and dislikes
try:
product_sentiment = get_product_sentiment(openai_client, reviews.tolist(), scores)
# Initialize empty columns
df['Likes'] = ""
df['Dislikes'] = ""
# Get the likes and dislikes lists
likes_list = product_sentiment.product_likes
dislikes_list = product_sentiment.product_dislikes
# Only populate the first N rows where N is the length of the likes/dislikes lists
for idx, (like, dislike) in enumerate(zip(likes_list, dislikes_list)):
df.loc[idx, 'Likes'] = like
df.loc[idx, 'Dislikes'] = dislike
except Exception as e:
print(f"Error extracting likes/dislikes for {product_name}: {str(e)}")
df['Likes'] = ""
df['Dislikes'] = ""
# Calculate sentiment distribution
sentiment_counts = pd.Series(sentiments).value_counts()
avg_sentiment_score = round(sum(scores) / len(scores), 2)
return df, sentiment_counts, avg_sentiment_score
def process_file(file_obj, api_key):
"""
Process the input file and add sentiment analysis results
"""
try:
if not api_key:
raise ValueError("OpenAI API key is required")
client = instructor.patch(OpenAI(api_key=api_key))
file_path = file_obj.name
sentiment_results = defaultdict(pd.Series)
avg_sentiment_scores = {}
all_processed_dfs = {}
if file_path.endswith('.csv'):
df = pd.read_csv(file_path)
product_name = "Product" # Default name for CSV
processed_df, sentiment_counts, avg_score = process_single_sheet(df, product_name, client)
all_processed_dfs[product_name] = processed_df
sentiment_results[product_name] = sentiment_counts
avg_sentiment_scores[product_name] = avg_score
elif file_path.endswith(('.xlsx', '.xls')):
excel_file = pd.ExcelFile(file_path)
for sheet_name in excel_file.sheet_names:
df = pd.read_excel(file_path, sheet_name=sheet_name)
processed_df, sentiment_counts, avg_score = process_single_sheet(df, sheet_name, client)
all_processed_dfs[sheet_name] = processed_df
sentiment_results[sheet_name] = sentiment_counts
avg_sentiment_scores[sheet_name] = avg_score
else:
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
# Create visualizations with new sentiment score chart
score_comparison_fig, distribution_fig, ratio_fig, summary_df = create_comparison_charts(
sentiment_results, avg_sentiment_scores
)
# Save results
output_path = "sentiment_analysis_results.xlsx"
with pd.ExcelWriter(output_path) as writer:
for sheet_name, df in all_processed_dfs.items():
df.to_excel(writer, sheet_name=sheet_name, index=False)
if isinstance(summary_df, pd.DataFrame): # Safety check
summary_df.to_excel(writer, sheet_name='Summary', index=False)
return score_comparison_fig, distribution_fig, summary_df, output_path
except Exception as e:
raise gr.Error(str(e))
# Update the Gradio interface
with gr.Blocks() as interface:
gr.Markdown("# Product Review Sentiment Analysis")
gr.Markdown("""
### Quick Guide
1. **Excel File (Multiple Products)**:
- Create separate sheets for each product
- Name sheets with product/company names
- Include "Reviews" column in each sheet
2. **CSV File (Single Product)**:
- Include "Reviews" column
Upload your file and click Analyze to get started.
""")
with gr.Row():
api_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your OpenAI API key",
type="password"
)
with gr.Row():
file_input = gr.File(
label="Upload File (CSV or Excel)",
file_types=[".csv", ".xlsx", ".xls"]
)
with gr.Row():
analyze_btn = gr.Button("Analyze Sentiments")
with gr.Row():
sentiment_score_plot = gr.Plot(label="Weighted Sentiment Scores")
with gr.Row():
distribution_plot = gr.Plot(label="Sentiment Distribution")
with gr.Row():
summary_table = gr.Dataframe(label="Summary Metrics")
with gr.Row():
output_file = gr.File(label="Download Full Report")
analyze_btn.click(
fn=process_file,
inputs=[file_input, api_key_input],
outputs=[sentiment_score_plot, distribution_plot, summary_table, output_file]
)
# Launch interface
interface.launch()