Spaces:
Running
Running
shriarul5273
commited on
Commit
·
c83c77e
1
Parent(s):
3959175
Add FPS
Browse files- app.py +13 -13
- data/time.csv +0 -2
app.py
CHANGED
@@ -5,8 +5,7 @@ from utils.general import (check_img_size, cv2,
|
|
5 |
from utils.plots import Annotator, colors
|
6 |
import numpy as np
|
7 |
import gradio as gr
|
8 |
-
import
|
9 |
-
|
10 |
data = 'data/coco128.yaml'
|
11 |
|
12 |
|
@@ -74,8 +73,9 @@ def detect(im,model,device,iou_threshold=0.45,confidence_threshold=0.25):
|
|
74 |
img = img.unsqueeze(0)
|
75 |
|
76 |
# Inference
|
|
|
77 |
pred = model(img, augment=False)
|
78 |
-
|
79 |
# NMS
|
80 |
pred = non_max_suppression(pred, confidence_threshold, iou_threshold, None, False, max_det=10)
|
81 |
|
@@ -95,7 +95,7 @@ def detect(im,model,device,iou_threshold=0.45,confidence_threshold=0.25):
|
|
95 |
print(xyxy,label)
|
96 |
annotator.box_label(xyxy, label, color=colors(c, True))
|
97 |
|
98 |
-
return imgs
|
99 |
|
100 |
|
101 |
def inference(img,model_link,iou_threshold,confidence_threshold):
|
@@ -116,16 +116,17 @@ def inference2(video,model_link,iou_threshold,confidence_threshold):
|
|
116 |
fps = frames.get(cv2.CAP_PROP_FPS)
|
117 |
image_size = (int(frames.get(cv2.CAP_PROP_FRAME_WIDTH)),int(frames.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
118 |
finalVideo = cv2.VideoWriter('output.mp4',cv2.VideoWriter_fourcc(*'VP90'), fps, image_size)
|
119 |
-
|
120 |
while frames.isOpened():
|
121 |
ret,frame = frames.read()
|
122 |
if not ret:
|
123 |
break
|
124 |
-
frame = detect(frame,model,device,iou_threshold,confidence_threshold)
|
|
|
125 |
finalVideo.write(frame)
|
126 |
frames.release()
|
127 |
finalVideo.release()
|
128 |
-
return 'output.mp4'
|
129 |
|
130 |
|
131 |
|
@@ -134,18 +135,16 @@ examples_images = ['data/images/bus.jpg',
|
|
134 |
examples_videos = ['data/video/input_0.mp4',
|
135 |
'data/video/input_1.mp4']
|
136 |
|
137 |
-
models = ['
|
138 |
|
139 |
with gr.Blocks() as demo:
|
140 |
-
csv = pd.read_csv('data/time.csv')
|
141 |
-
csv['id'] = csv['id'] + 1
|
142 |
-
csv.to_csv('data/time.csv',index=False)
|
143 |
gr.Markdown("## YOLOv5 Inference")
|
144 |
with gr.Tab("Image"):
|
145 |
gr.Markdown("## YOLOv5 Inference on Image")
|
146 |
with gr.Row():
|
147 |
image_input = gr.Image(type='pil', label="Input Image", source="upload")
|
148 |
image_output = gr.Image(type='pil', label="Output Image", source="upload")
|
|
|
149 |
image_drop = gr.Dropdown(choices=models,value=models[0])
|
150 |
image_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
|
151 |
image_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
|
@@ -156,6 +155,7 @@ with gr.Blocks() as demo:
|
|
156 |
with gr.Row():
|
157 |
video_input = gr.Video(type='pil', label="Input Image", source="upload")
|
158 |
video_output = gr.Video(type="pil", label="Output Image",format="mp4")
|
|
|
159 |
video_drop = gr.Dropdown(choices=models,value=models[0])
|
160 |
video_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
|
161 |
video_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
|
@@ -168,9 +168,9 @@ with gr.Blocks() as demo:
|
|
168 |
|
169 |
text_button.click(inference, inputs=[image_input,image_drop,
|
170 |
image_iou_threshold,image_conf_threshold],
|
171 |
-
outputs=image_output)
|
172 |
video_button.click(inference2, inputs=[video_input,video_drop,
|
173 |
video_iou_threshold,video_conf_threshold],
|
174 |
-
outputs=video_output)
|
175 |
|
176 |
demo.launch()
|
|
|
5 |
from utils.plots import Annotator, colors
|
6 |
import numpy as np
|
7 |
import gradio as gr
|
8 |
+
import time
|
|
|
9 |
data = 'data/coco128.yaml'
|
10 |
|
11 |
|
|
|
73 |
img = img.unsqueeze(0)
|
74 |
|
75 |
# Inference
|
76 |
+
start = time.time()
|
77 |
pred = model(img, augment=False)
|
78 |
+
fps_inference = 1/(time.time()-start)
|
79 |
# NMS
|
80 |
pred = non_max_suppression(pred, confidence_threshold, iou_threshold, None, False, max_det=10)
|
81 |
|
|
|
95 |
print(xyxy,label)
|
96 |
annotator.box_label(xyxy, label, color=colors(c, True))
|
97 |
|
98 |
+
return imgs,fps_inference
|
99 |
|
100 |
|
101 |
def inference(img,model_link,iou_threshold,confidence_threshold):
|
|
|
116 |
fps = frames.get(cv2.CAP_PROP_FPS)
|
117 |
image_size = (int(frames.get(cv2.CAP_PROP_FRAME_WIDTH)),int(frames.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
118 |
finalVideo = cv2.VideoWriter('output.mp4',cv2.VideoWriter_fourcc(*'VP90'), fps, image_size)
|
119 |
+
fps_video = []
|
120 |
while frames.isOpened():
|
121 |
ret,frame = frames.read()
|
122 |
if not ret:
|
123 |
break
|
124 |
+
frame,fps = detect(frame,model,device,iou_threshold,confidence_threshold)
|
125 |
+
fps_video.append(fps)
|
126 |
finalVideo.write(frame)
|
127 |
frames.release()
|
128 |
finalVideo.release()
|
129 |
+
return 'output.mp4',np.mean(fps_video)
|
130 |
|
131 |
|
132 |
|
|
|
135 |
examples_videos = ['data/video/input_0.mp4',
|
136 |
'data/video/input_1.mp4']
|
137 |
|
138 |
+
models = ['yolov5s','yolov5n','yolov5m','yolov5l','yolov5x']
|
139 |
|
140 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
141 |
gr.Markdown("## YOLOv5 Inference")
|
142 |
with gr.Tab("Image"):
|
143 |
gr.Markdown("## YOLOv5 Inference on Image")
|
144 |
with gr.Row():
|
145 |
image_input = gr.Image(type='pil', label="Input Image", source="upload")
|
146 |
image_output = gr.Image(type='pil', label="Output Image", source="upload")
|
147 |
+
fps_image = gr.Number(value=0,label='FPS')
|
148 |
image_drop = gr.Dropdown(choices=models,value=models[0])
|
149 |
image_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
|
150 |
image_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
|
|
|
155 |
with gr.Row():
|
156 |
video_input = gr.Video(type='pil', label="Input Image", source="upload")
|
157 |
video_output = gr.Video(type="pil", label="Output Image",format="mp4")
|
158 |
+
fps_video = gr.Number(value=0,label='FPS')
|
159 |
video_drop = gr.Dropdown(choices=models,value=models[0])
|
160 |
video_iou_threshold = gr.Slider(label="IOU Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.45)
|
161 |
video_conf_threshold = gr.Slider(label="Confidence Threshold",interactive=True, minimum=0.0, maximum=1.0, value=0.25)
|
|
|
168 |
|
169 |
text_button.click(inference, inputs=[image_input,image_drop,
|
170 |
image_iou_threshold,image_conf_threshold],
|
171 |
+
outputs=[image_output,fps_image])
|
172 |
video_button.click(inference2, inputs=[video_input,video_drop,
|
173 |
video_iou_threshold,video_conf_threshold],
|
174 |
+
outputs=[video_output,fps_video])
|
175 |
|
176 |
demo.launch()
|
data/time.csv
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
id
|
2 |
-
2
|
|
|
|
|
|