import gradio as gr import requests import io import random import os import time from PIL import Image from deep_translator import GoogleTranslator import json # Project by Nymbo API_URL = "https://api-inference.huggingface.co/models/shweaung/tazaungdaing" API_TOKEN = os.getenv("HF_READ_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} timeout = 100 # Function to query the API and return the generated image def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024): if prompt == "" or prompt is None: return None key = random.randint(0, 999) API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) headers = {"Authorization": f"Bearer {API_TOKEN}"} # Translate the prompt from Russian to English if necessary prompt = GoogleTranslator(source='my', target='en').translate(prompt) print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') # Add some extra flair to the prompt prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." print(f'\033[1mGeneration {key}:\033[0m {prompt}') # Prepare the payload for the API call, including width and height payload = { "inputs": prompt, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed != -1 else random.randint(1, 1000000000), "strength": strength, "parameters": { "width": width, # Pass the width to the API "height": height # Pass the height to the API } } # Send the request to the API and handle the response response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) if response.status_code != 200: print(f"Error: Failed to get image. Response status: {response.status_code}") print(f"Response content: {response.text}") if response.status_code == 503: raise gr.Error(f"{response.status_code} : The model is being loaded") raise gr.Error(f"{response.status_code}") try: # Convert the response content into an image image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') return image except Exception as e: print(f"Error when trying to open the image: {e}") return None # CSS to style the app css = """ #app-container { max-width: 800px; margin-left: auto; margin-right: auto; } """ # Build the Gradio UI with Blocks with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: # Add a title to the app gr.HTML("