Spaces:
Sleeping
Sleeping
import json | |
import os | |
import torch | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
import gradio as gr | |
def load_or_create_model_and_embeddings(model_name, data_file): | |
model_path = os.path.join(output_dir, 'saved_model') | |
embeddings_path = os.path.join(output_dir, 'corpus_embeddings.pt') | |
if os.path.exists(model_path) and os.path.exists(embeddings_path): | |
print("載入已保存的模型和嵌入...") | |
model = SentenceTransformer(model_path) | |
embeddings = torch.load(embeddings_path) | |
else: | |
model = SentenceTransformer(model_name) | |
with open(data_file, 'r', encoding='utf-8') as f: | |
data = json.load(f) | |
texts = [item['text'] for item in data] | |
embeddings = model.encode(texts, convert_to_tensor=True) | |
return model, embeddings | |
# 設置參數 | |
model_name = 'sentence-transformers/all-MiniLM-L6-v2' | |
data_file = 'labeled_cti_data.json' | |
output_dir = '.' | |
# 載入或創建模型和嵌入 | |
model, embeddings= load_or_create_model_and_embeddings(model_name, data_file) | |
# 創建 Faiss 索引 | |
dimension = embeddings.shape[1] | |
index = faiss.IndexFlatL2(dimension) | |
index.add(embeddings.cpu().numpy().astype('float32')) | |
def semantic_search(query, top_k=3): | |
query_vector = model.encode([query], convert_to_tensor=True) | |
distances, indices = index.search(query_vector.cpu().numpy().astype('float32'), top_k) | |
results = [] | |
for i, idx in enumerate(indices[0]): | |
results.append({ | |
'text': texts[idx], | |
'similarity_score': 1 - distances[0][i] / 2 | |
}) | |
return results | |
def search_and_format(query): | |
results = semantic_search(query) | |
formatted_results = "" | |
for i, result in enumerate(results, 1): | |
formatted_results += f"{i}. 相似度分數: {result['similarity_score']:.4f}\n" | |
formatted_results += f" 情一: {result['text']}\n\n" | |
return formatted_results | |
# 創建Gradio界面 | |
iface = gr.Interface( | |
fn=search_and_format, | |
inputs=gr.Textbox(lines=2, placeholder="輸入您的搜索查詢..."), | |
outputs=gr.Textbox(lines=10), | |
title="語義搜索", | |
description="輸入查詢以搜索相關文本。將顯示前3個最相關的結果。" | |
) | |
# 啟動Gradio界面 | |
iface.launch() |